Development of Copper Loaded Nanoparticles Hydrogel Made from Waste Biomass (Sugarcane Bagasse) for Special Medical Application

2020 ◽  
Vol 847 ◽  
pp. 102-107
Author(s):  
Harish Kumar ◽  
Avneesh Kumar Gehlaut ◽  
Himanshu Gupta ◽  
Ankur Gaur ◽  
Jin Won Park

This research is based on the creation of copper oxide nanoparticles (CuO-NPs) hydrogel through in situ method. The effective UV-Vis spectroscopy absorption peak of 610 nm indicates the existence of copper oxide nanoparticles (CuO-NP) group because of surface Plasmon resonance (SPR). Characterization of CuO-NPs was carried out by SEM, TEM, EDX, and XRD. However, the action of prepared nanocomposite hydrogels swelling was examined at different pH and saline solutions. In addition, CuO-NPs were also tested using the disk plate diffusion method by means of adverse effect of bacteria Gram-positive bacteria (Bacillus subtilis) as well as Gram-negative bacteria (Escherichia coli). The CuO-NPs hydrogels isolated from lab-made CMC (made from sugarcane bagasse) indicates that the Bacillus subtilis as well as Escherichia coli have greater antibacterial activity compared with synthetic CMC purchase from the market. CuO-NPs can be used effectively in biomedical applications with the production of hydrogels.

2020 ◽  
Author(s):  
Moaz Hamed ◽  
Hanaa S.S. Gazwi ◽  
Asmaa M. Youssif

Abstract Biosynthesis methods, employing microorganisms, have emerged as an eco-friendly, clean and viable alternative to chemical and physical methods. The present study reports the biosynthesis of copper oxide nanoparticles (CuONPs) using cell-free culture supernatant of marine Streptomyces sp. MHM38. For the optimized production of copper oxide nanoparticles, the influence of some parameters such as concentration of copper sulphate, reaction time, filtrate to substrate ratio and pH were studied. 5mM CuSO4 was optimal for NP production. Well-defined CuONP formation occurred after 60 min incubation when equal volume of filtrate (cell-free supernatant) to substrate (CuSO4 solution) was added. NPs remained stable in aqueous solution with increasing time at pH 8. CuONPs were characterized by UV-vis spectroscopy, X-ray diffraction (XRD) and finally the nature of the nanoparticles was identified by elemental analysis (EDX). Uv-vis spectroscopy of CuONPs exhibited peak at 550 nm which corresponds to the Surface Plasmon Resonance of CuONPs. Most of the particles are spherical in shape and size ranges from 1.06 – 6.5 nm analyzed using Transmission Electron Microscope (TEM). Antimicrobial activity of CuONPs was performed by well diffusion method against Enterococcus faecalis ATCC 29212, Salmonella typhimurium ATCC 14028, Pseudomonas aeruginosa ATCC 9027, Escherichia coli ATCC 8939), fungi (Rhizoctonia solani, Fusarium solani, Aspergillus niger) and yeast (Candida albicans ATCC 10237) .The highest antimicrobial activities recorded were against Candida albicans ATCC 10237, were as Salmonella typhimurium ATCC 14028 and Escherichia coli ATCC 8939 showed the lesser activity. The preventive efficacy of CuONPs was evaluated against the oxidative stress induced by paracetamol (PAC) in albino rats. The biochemical findings of CuONPs groups appeared a significant (p˂0.05) diminish in the levels of ALT, AST, ALP, LDH, total and direct bilirubin, Urea, and Creatinine as compared to paracetamol group. Non-enzymatic and enzymatic antioxidants of CuONPs groups were significantly elevated (p˂0.05) in SOD and GSH levels and significantly low NO and MAD levels compared to the paracetamol group. Also, the histopathological examination of the CuONPs groups assured that the impact of improving CuONPs against paracetamol-induced liver damage.


2020 ◽  
Vol 09 ◽  
Author(s):  
Akshaya Venkatramanan ◽  
Akila Ilangovan ◽  
Pakutharivu Thangarajan ◽  
Anitha Saravanan ◽  
Balachandar M

Background: The Nanomaterials/Nanoparticles are of great interest today because of their small size and large surface area, modular and easily tunable morphology and size. Copper oxide (CuO) nanoparticles are widely used in dye-sensitized solar cells (DSSCs). Research on the synthesis and properties of metallic nanomaterials is a growing field of nanotechnology due to the use of nanoparticles in the scientific, technical, pharmaceutical, and biomedical fields. Green synthesis is an emerging technology for the production of nanoparticles due to its many advantages over traditional physical processes and the method of chemical synthesis. Methods: In this study, we report the cost-effective, long-lasting, stable, and regenerative aqueous extract of Eletteria cardamom seeds to target the synthesis of copper oxide nanoparticles (CuO NPs). This method is completely green, free from toxic and harmful solvents. CuO NPs were synthesized from a cupric nitrate mixture and the aqueous extracts of Eletteria cardamom seeds were kept at room temperature for 24 h. CuO NPs were characterized using UV-visible spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), dynamic light scattering (DLS), and Fourier Transfer infra-red spectroscopy (FTIR) analyzes. UV - Vis spectroscopy revealed the presence of CuO NPs. Results: SEM images stated that the particles were spherical and ranged in size from 1–100nm. FTIR spectra of control (seed extract) and synthesized CuO NPs identify functional groups of active components. In addition, the synthesized CuO NPs were tested for antimicrobial activity by standard disc diffusion method. Conclusion: Nanoparticles found that Escherichia coli and Staphylococcus aureus resistant areas were observed around each well with antimicrobial activity against disease-causing pathogenic strains.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Sarah I. Bukhari ◽  
Moaz M. Hamed ◽  
Mohamed H. Al-Agamy ◽  
Hanaa S. S. Gazwi ◽  
Hesham H. Radwan ◽  
...  

Biosynthesis methods employing microorganisms have emerged as an eco-friendly, clean, and viable alternative to chemical and physical processes. The present study reports the synthesis of copper oxide nanoparticles (CuONPs) using cell-free culture supernatant of marine Streptomyces sp. MHM38. For the optimized production of CuONPs, the influence of some parameters, such as the concentration of copper sulfate (CuSO4), reaction time, filtrate to substrate ratio, and pH, was studied. 5 mM of CuSO4 was optimal for nanoparticle (NP) production. Well-defined CuONP formation occurred after 60 min of incubation when an equal volume of filtrate (cell-free supernatant) to substrate (CuSO4 solution) was added. UV-visible spectroscopy analysis of CuONPs exhibited a peak at 550 nm, which corresponds to the surface plasmon resonance of CuONPs. Most of the particles were spherical and were 1.72–13.49 nm when measured using a transmission electron microscope. The antimicrobial activity of CuONPs was determined using a well diffusion method against Enterococcus faecalis ATCC 29212, Salmonella typhimurium ATCC 14028, Pseudomonas aeruginosa ATCC 9027, Escherichia coli ATCC 8939, fungi (Rhizoctonia solani, Fusarium solani, and Aspergillus niger), and yeast (Candida albicans ATCC 10237). The highest antimicrobial activities were recorded against Candida albicans ATCC 10237, whereas Salmonella typhimurium ATCC 14028 and Escherichia coli ATCC 8939 showed the less activity. The biochemical findings of the CuONP groups were significant ( p < 0.05 ) with diminished levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), total and direct bilirubin, urea, and creatinine compared with the paracetamol group. Nonenzymatic and enzymatic antioxidants of the CuONP groups were significantly elevated ( p < 0.05 ) in SOD and GSH levels, and exceptionally low nitric oxide (NO) and malondialdehyde (MAD) levels were found for the paracetamol group. The histopathological examination of the CuONP groups assured the impact of improving CuONPs against paracetamol-induced liver damage.


2021 ◽  
Vol 12 (2) ◽  
pp. 1397-1404

Biosynthesized nanoparticles have a huge perspective. It is an environment-friendly, cost-efficient, reproducible, and energy-efficient method compared to physical or chemical synthesis. In the present study, biosynthesis of copper oxide nanoparticles (CuONP) was done using Purpureocillium lilacinum. Characterization of synthesized CuONP was done by using UV–vis spectroscopy, TEM, and XRD analysis. UV–vis gave characteristic SPR peak for CuONP at 360 nm. TEM image reveals that the morphology of biosynthesized CuONP was spherical, and their size range between 4.03nm to 8.83nm. The XRD analysis confirmed the crystalline nature of CuO with a size range of 6-26.6nm. Further comparative study of photocatalytic degradation of navy blue and safranin using CuONP was done. CuO-NPs exhibited potential catalytic activity in navy blue (57.5 %) and safranin (63 %), respectively.


2018 ◽  
Vol 24 (3) ◽  
pp. 213-218 ◽  
Author(s):  
Hadi Sedigh Ebrahim-Saraie ◽  
Hamid Heidari ◽  
Vahid Rezaei ◽  
Seyed Mohammad Javad Mortazavi ◽  
Mohammad Motamedifar

Background: Recently, nanotechnology has been demonstrated to be a promising application to overcome the problem of antibiotic resistance. In the present study, we aimed to determine the antibacterial activity of copper oxide nanoparticles (CuO NPs) on several multiple-drug resistant (MDR) uropathogenic strains. Methods: This in vitro case-control study was performed on 4 uropathogenic bacteria including Staphylococcus aureus, Enterococcus faecalis, Escherichia coli and Pseudomonas aeruginosa. The antibacterial property was evaluated by well diffusion method at different concentrations of CuO NPs. Results: Overall, NPs concentration of 10, 25 and 50 µg/mL showed the remarkable antibacterial activity. A lower effect was seen against S. aureus strains. CuO NPs exhibited maximum bacterial growth inhibition against E. faecalis strains. In most of the cases, the zone of inhibition in 50 µg/mL concentration was closest to control positive antibiotics. Conclusion: In summary, CuO NPs as an alternative to conventional antibiotics that are currently used showed dose-dependent on antibacterial activity against different uropathogens, specificity towards pathogenic Gram-positive bacteria. This promising antibacterial activity of CuO NPs suggesting the development of NPs coatings on the different surface of biomedical materials for applications in different antimicrobial control systems.


Author(s):  
Haider Qassim Raheem ◽  
Takwa S. Al-meamar ◽  
Anas M. Almamoori

Fifty specimens were collected from wound patients who visited Al-Hilla Teaching Hospital. The samples were grown on Blood and MacConkey agar for 24-48 hr at 37oC. The bacterial isolates which achieved as a pure and predominant growth from clinical samples as Pseudomonas fluorescens, were identified using morphological properties and Vitek2 system. The anti-bacterial activity of copper oxide nanoparticles (CuO NPs) against was tested by (disk diffusion assay) using dilutions of (400, 200, 100, 50, 25, and 12.5‎µ‎g/ml). The (MIC and MBC) of each isolate was determined. CuO NPs shows wide spectrum antibacterial activity against tested bacteria with rise zone of inhibition diameter that is proportionate with the increase in nanoparticle concentration. The MIC of CuO NPs extended from 100-200‎µ‎g/ml and the MBC ranged from 200-400‎µ‎g/ml. The antibiotic profile was determined by Viteck 2 compact system (Biomérieux). CuO NPs‎ found highly effective and safe in P. fluorescens wounds infections comparing with used antibiotics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alaa El Din Mahmoud ◽  
Khairia M. Al-Qahtani ◽  
Sahab O. Alflaij ◽  
Salma F. Al-Qahtani ◽  
Faten A. Alsamhan

AbstractEnvironmentally friendly copper oxide nanoparticles (CuO NPs) were prepared with a green synthesis route without using hazardous chemicals. Hence, the extracts of mint leaves and orange peels were utilized as reducing agents to synthesize CuO NPs-1 and CuO NPs-2, respectively. The synthesized CuO NPs nanoparticles were characterized using scanning electron microscopy (SEM), Energy Dispersive X-ray Analysis (EDX), BET surface area, Ultraviolet–Visible spectroscopy (UV–Vis), and Fourier Transform Infrared Spectroscopy (FT-IR). Various parameters of batch experiments were considered for the removal of Pb(II), Ni(II), and Cd(II) using the CuO NPs such as nanosorbent dose, contact time, pH, and initial metal concentration. The maximum uptake capacity (qm) of both CuO NPs-1 and CuO NPs-2 followed the order of Pb(II) > Ni(II) > Cd(II). The optimum qm of CuO NPs were 88.80, 54.90, and 15.60 mg g−1 for Pb(II), Ni(II), and Cd(II), respectively and occurred at sorbent dose of 0.33 g L−1 and pH of 6. Furthermore, isotherm and kinetic models were applied to fit the experimental data. Freundlich models (R2 > 0.97) and pseudo-second-order model (R2 > 0.96) were fitted well to the experimental data and the equilibrium of metal adsorption occurred within 60 min.


Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 78
Author(s):  
Karla Araya-Castro ◽  
Tzu-Chiao Chao ◽  
Benjamín Durán-Vinet ◽  
Carla Cisternas ◽  
Gustavo Ciudad ◽  
...  

Amongst different living organisms studied as potential candidates for the green synthesis of copper nanoparticles, algal biomass is presented as a novel and easy-to-handle method. However, the role of specific biomolecules and their contribution as reductant and capping agents has not yet been described. This contribution reports a green synthesis method to obtain copper oxide nanoparticles (CuO-NPs) using separated protein fractions from an aqueous extract of brown algae Macrocystis pyrifera through size exclusion chromatography (HPLC-SEC). Proteins were detected by a UV/VIS diode array, time-based fraction collection was carried out, and each collected fraction was used to evaluate the synthesis of CuO-NPs. The characterization of CuO-NPs was evaluated by Dynamic Light Scattering (DLS), Z-potential, Fourier Transform Infrared (FTIR), Transmission Electron Microscope (TEM) equipped with Energy Dispersive X-ray Spectroscopy (EDS) detector. Low Molecular Weight (LMW) and High Molecular Weight (HMW) protein fractions were able to synthesize spherical CuO-NPs. TEM images showed that the metallic core present in the observed samples ranged from 2 to 50 nm in diameter, with spherical nanostructures present in all containing protein samples. FTIR measurements showed functional groups from proteins having a pivotal role in the reduction and stabilization of the nanoparticles. The highly negative zeta potential average values from obtained nanoparticles suggest high stability, expanding the range of possible applications. This facile and novel protein-assisted method for the green synthesis of CuO-NPs may also provide a suitable tool to synthesize other nanoparticles that have different application areas.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2502
Author(s):  
Obakeng P. Keabadile ◽  
Adeyemi O. Aremu ◽  
Saheed E. Elugoke ◽  
Omolola E. Fayemi

The current study compared the synthesis, characterization and properties of copper oxide nanoparticles (CuO) based on green and traditional chemical methods. The synthesized CuO were confirmed by spectroscopic and morphological characterization such as ultraviolet-visible (UV-vis) spectroscopy, fourier transform infrared (FTIR) spectroscopy, zeta potential, scanning electron microscopy (SEM) and energy dispersed X-ray (EDX). Electrochemical behavior of the modified electrodes was done using cyclic voltammetry (CV) in ferricyanide/ferrocyanide ([Fe(CN)6]4−/[Fe(CN)6]3−) redox probe. As revealed by UV spectrophotometer, the absorption peaks ranged from 290–293 nm for all synthesized nanoparticles. Based on SEM images, CuO were spherical in shape with agglomerated particles. Zeta potential revealed that the green CuO have more negative surface charge than the chemically synthesized CuO. The potential of the green synthesized nanoparticles was higher relative to the chemically synthesized one. Cyclic voltammetry studies indicated that the traditional chemically synthesized CuO and the green CuO have electrocatalytic activity towards the ferricyanide redox probe. This suggests that the green CuO can be modified with other nanomaterials for the preparation of electrochemical sensors towards analytes of interest.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Maqusood Ahamed ◽  
Hisham A. Alhadlaq ◽  
M. A. Majeed Khan ◽  
Ponmurugan Karuppiah ◽  
Naif A. Al-Dhabi

We studied the structural and antimicrobial properties of copper oxide nanoparticles (CuO NPs) synthesized by a very simple precipitation technique. Copper (II) acetate was used as a precursor and sodium hydroxide as a reducing agent. X-ray diffraction patter (XRD) pattern showed the crystalline nature of CuO NPs. Field emission scanning electron microscope (FESEM) and field emission transmission electron microscope (FETEM) demonstrated the morphology of CuO NPs. The average diameter of CuO NPs calculated by TEM and XRD was around 23 nm. Energy dispersive X-ray spectroscopy (EDS) spectrum and XRD pattern suggested that prepared CuO NPs were highly pure. CuO NPs showed excellent antimicrobial activity against various bacterial strains (Escherichia coli,Pseudomonas aeruginosa,Klebsiella pneumonia,Enterococcus faecalis,Shigella flexneri,Salmonella typhimurium,Proteus vulgaris,andStaphylococcus aureus). Moreover,E. coliandE. faecalisexhibited the highest sensitivity to CuO NPs whileK. pneumoniawas the least sensitive. Possible mechanisms of antimicrobial activity of CuO NPs should be further investigated.


Sign in / Sign up

Export Citation Format

Share Document