Protein Distribution

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Paul Moore ◽  
Alexandra Krause
Keyword(s):  
Endocrinology ◽  
2013 ◽  
Vol 154 (3) ◽  
pp. 1321-1336 ◽  
Author(s):  
Francisco Gaytan ◽  
Susana Sangiao-Alvarellos ◽  
María Manfredi-Lozano ◽  
David García-Galiano ◽  
Francisco Ruiz-Pino ◽  
...  

Abstract Lin28 (also termed Lin28a) and Lin28b are related RNA-binding proteins, involved in the control of microRNA synthesis, especially of the let-7 family, with putative functions in early (embryo) development. However, their roles during postnatal maturation remain ill defined. Despite the general assumption that Lin28 and Lin28b share similar targets and functions, conclusive demonstration of such redundancy is still missing. In addition, recent observations suggest a role of Lin28 proteins in mammalian reproduction, which is yet to be defined. We document herein the patterns of RNA expression and protein distribution of Lin28 and Lin28b in mouse testis during postnatal development and in a model of hypogonadotropic hypogonadism as a result of inactivation of the kisspeptin receptor, Gpr54. Lin28 and Lin28b mRNAs were expressed in mouse testis across postnatal maturation, but their levels disparately varied between neonatal and pubertal periods, with peak Lin28 levels in infantile testes and sustained elevation of Lin28b mRNA in young adult male gonads, where relative levels of let-7a and let-7b miRNAs were significantly suppressed. In addition, Lin28 peptides displayed totally different patterns of cellular distribution in mouse testis: Lin28 was located in undifferentiated and type-A1 spermatogonia, whereas Lin28b was confined to spermatids and interstitial Leydig cells. These profiles were perturbed in Gpr54 null mouse testis, which showed preserved but irregular Lin28 signal and absence of Lin28b peptide, which was rescued by administration of gonadotropins, mainly hCG (as super-agonist of LH). In addition, increased relative levels of Lin28, but not Lin28b, mRNA and of let-7a/let-7b miRNAs were observed in Gpr54 KO mouse testes. Altogether, our data are the first to document the divergent patterns of cellular distribution and mRNA expression of Lin28 and Lin28b in the mouse testis along postnatal maturation and their alteration in a model of congenital hypogonadotropic hypogonadism. Our findings suggest distinct functional roles of these two related, but not overlapping, miRNA-binding proteins in the male gonad.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 1057.2-1057
Author(s):  
Y. Liu ◽  
Y. Huang ◽  
Q. Huang ◽  
S. Sun ◽  
Z. Ji ◽  
...  

Background:Exosomes in synovial fluid (SF) has a close relationship with the pathogenesis of rheumatiod arthritis. As a complex biological fluid, SF presents challenges for exosomes isolation using standard methods, such as ExoquickTM kit and ultracentrifugation.Objectives:The study aims to compared the quality of exosomes separated by ExoquickTM kit (TM), ExoquickTM kit+ExoquickTC kit (TM-TC), ultracentrifugation (UC) and TM-TC+UC(TM-TC-UC) from SF.Methods:Exosomes was separated by TM, TM-TC, UC and TM-TC-UC respectively. The size and concentrations of exosomes were detected by high sensitivity flow cytometry for nanoparticle analysis. Total protein and RNA were extracted from exosomes. SDS-PAGE was used to detect the protein distribution of exosomes. Western blot was used to examine the level of albumin and exosomes marker (TSG101 and CD81).Results:There was no statistic difference in the diameters of exosomes separated by the four methods. The concentrations of exosomes in TM, TM-TC, TM-TC-UC and UC were (5.65±0.93), (3.02±1.19), (1.67±0.25) and (4.61±0.73) *109Particles/mL. The protein concentrations of exosomes separated by the four methods were consistent with the concentrations of exosomes. SDS-PAGE showed that the protein distribution of exosomes separated by the four methods were different. Low levels of albumin were detected in TM-TC and TM-TC-UC, while high levels of albumin in TM and UC. Total RNA concentrations from exosomes in TM-TC was higher than other groups.Conclusion:TM-TC can be used to obtain higher quality exosomes from SF for the study of exosome-enriched components.References:[1]Helwa I, et al, A Comparative Study of Serum Exosome Isolation Using Differential Ultracentrifugation and Three Commercial Reagents. PloS one, 2017. 12(1): p. e0170628-e0170628.Figure 1.A: SDS-PAGE showed the protein distribution of exosomes; B: the detection of albumin, TSG101 and CD81 by western blot.Disclosure of Interests:None declared


2021 ◽  
Vol 117 ◽  
pp. 104980
Author(s):  
Marije Akkerman ◽  
Lene Buhelt Johansen ◽  
Valentin Rauh ◽  
Nina Aagaard Poulsen ◽  
Lotte Bach Larsen

2015 ◽  
Vol 25 (07) ◽  
pp. 1540008
Author(s):  
Peijiang Liu ◽  
Zhanjiang Yuan ◽  
Lifang Huang ◽  
Tianshou Zhou

Gene expression is inherently noisy, implying that the number of mRNAs or proteins is not invariant rather than follows a distribution. This distribution can not only provide the exact information on the dynamics of gene expression but also describe cell-to-cell variability in a genetically identical cell population. Here, we systematically investigate a two-state model of gene expression, a model paradigm used to study expression dynamics, focusing on the effect of feedback on the type of mRNA or protein distribution. If there is no feedback, then the distribution may be bimodal, power-law tailed, or Poisson-like, depending on gene switching rates. However, we find that feedback can tune or change the type of the distribution in each case and tends to unimodalize the distribution as its strength increases. Specifically, positive feedback can change not only a power-law tailed distribution into a bimodal or Poisson-like distribution but also a bimodal distribution into a Poisson-like distribution (implying that stochastic bifurcation can take place). In addition, it can make a Poisson-like distribution become more peaked but does not change the type of this distribution. In contrast to positive feedback, negative feedback has less influence on the shape of the distributions except for the bimodal case. In all cases, the noise-feedback curve used extensively in previous studies cannot well reflect the feedback-induced changes in the shape of distributions. Feedback-induced variations in distribution would be important for cell survival in fluctuating environments.


Development ◽  
1990 ◽  
Vol 109 (1) ◽  
pp. 75-80 ◽  
Author(s):  
M. Maden ◽  
D.E. Ong ◽  
F. Chytil

We have analysed the distribution of cellular retinol-binding protein (CRBP) and cellular retinoic acid-binding protein (CRABP) in the day 8.5-day 12 mouse and rat embryo. CRBP is localised in the heart, gut epithelium, notochord, otic vesicle, sympathetic ganglia, lamina terminalis of the brain, and, most strikingly, in a ventral stripe across the developing neural tube in the future motor neuron region. This immunoreactivity remains in motor neurons and, at later stages, motor axons are labelled in contrast to unlabelled sensory axons. CRABP is localised to the neural crest cells, which are particularly noticeable streaming into the branchial arches. At later stages, neural crest derivatives such as Schwann cells, cells in the gut wall and sympathetic ganglia are immunoreactive. An additional area of CRABP-positive cells are neuroblasts in the mantle layer of the neural tube, which subsequently appear to be the axons and cell bodies of the commissural system. Since retinol and retinoic acid are the endogenous ligands for these binding proteins, we propose that retinoids may play a role in the development and differentiation of the mammalian nervous system and may interact with certain homoeobox genes whose transcripts have also been localised within the nervous system.


Sign in / Sign up

Export Citation Format

Share Document