ANÁLISE NUMÉRICA E ANALÍTICA DA CARGA NO PROCESSO DE ROLAMENTO

2018 ◽  
Vol 12 (2) ◽  
pp. 38-50
Author(s):  
João Pedro Silva Oliveira ◽  
Georgyson Dias Neo ◽  
Carlos Eduardo Lima Dos Santos ◽  
Bruno Berner Dos Santos ◽  
Gustavo Simão Rodrigues

The rolling process is of great importance to the industry and the understanding is a fundamental function for its design and use. Currently there are two traditional processes for steel rolling: Hot rolling (from 1300 ⁰C to ⁰700 C) and cold rolling (at room temperature). The process consists in reducing the cross section of a billet by means of compressive forces, applied by rolling rolls, mounted in a rolling mill. In order to control the efforts in the mill, the billet usually passes several times between the rollers, with a thinner thickness each time less. Between each rolling, annealing processes may be applied to recover the ductility of the reduced metal by the scrubbing and pickling to remove the oxide layer formed on the surface. A good calibration of the rolling mill and material is important to avoid rolling defects, generating products with imprecise dimensions and undesirable deformations. Two mathematical models can be presented: Homogeneous Deformation Method and Equilibrium Method. A case study is proposed.  The study consists in calculating the efforts required to laminate a defined steel billet, comparing both analytical formulations to the results obtained by Finite Element Method developed in ABAQUS software. The results of the analytical path are compared with the simulation results. Finally, the difference of the presented results can be explained by the consideration of the increase of the tension for plastic deformation due to the hardening by ABAQUS software.

2016 ◽  
Vol 716 ◽  
pp. 864-870
Author(s):  
Andrzej Stefanik ◽  
Piotr Szota ◽  
Sebastian Mróz ◽  
Teresa Bajor ◽  
Sonia Boczkal

This paper presents the research results of the microstructure changes of the round rods of AZ31 magnesium alloy in the hot rolling processes. The rolling was conducted in duo mill and a three-high skew rolling mill. Numerical modelling of the AZ31 magnesium alloy round rods rolling process was conducted using a computer program Forge 2011®. The verification of the results of numerical modelling was carried out during laboratory tests in a two-high rolling mill D150 and a three-high skew rolling mill RSP 40/14. Distributions of the total effective strain and temperature during AZ31 rods rolling process were determined on the basis of the theoretical analysis. Microstructure and texture changes during both analysed processes were studied.


Author(s):  
D. Ll. Davies ◽  
J. Watton ◽  
Y. Xue ◽  
G. A. Williams

With increasing international competition in steel production mainly from developing nations, it is important for steel plants to keep up to date with new technologies, and continuously improve on current practices and manufacturing techniques to remain competitive. This paper looks specifically at improvements to the hot rolling mill downcoilers, which is where the strip is coiled at the end of the rolling process. Hydraulic and pneumatic technology is combined to give accurate position control of guide wrappers that aid the initial coiling process. The paper presents an experimental test rig, using an actual wrapper guide, constructed to evaluate the specific design approach.


2019 ◽  
Vol 19 (2) ◽  
pp. 101-110
Author(s):  
Adrian Firdaus ◽  
M. Dwi Yoga Sutanto ◽  
Rajin Sihombing ◽  
M. Weldy Hermawan

Abstract Every port in Indonesia must have a Port Master Plan that contains an integrated port development plan. This study discusses one important aspect in the preparation of the Port Master Plan, namely the projected movement of goods and passengers, which can be used as a reference in determining the need for facilities at each stage of port development. The case study was conducted at a port located in a district in Maluku Province and aims to evaluate the analysis of projected demand for goods and passengers occurring at the port. The projection method used is time series and econometric projection. The projection results are then compared with the existing data in 2018. The results of this study show that the econometric projection gives adequate results in predicting loading and unloading activities as well as the number of passenger arrival and departure in 2018. This is indicated by the difference in the percentage of projection results towards the existing data, which is smaller than 10%. Whereas for loading and unloading activities, time series projections with logarithmic trends give better results than econometric projections. Keywords: port, port master plan, port development, unloading activities  Abstrak Setiap pelabuhan di Indonesia harus memiliki sebuah Rencana Induk Pelabuhan yang memuat rencana pengem-bangan pelabuhan secara terpadu. Studi ini membahas salah satu aspek penting dalam penyusunan Rencana Induk Pelabuhan, yaitu proyeksi pergerakan barang dan penumpang, yang dapat dipakai sebagai acuan dalam penentuan kebutuhan fasilitas di setiap tahap pengembangan pelabuhan. Studi kasus dilakukan pada sebuah pelabuhan yang terletak di sebuah kabupaten di Provinsi Maluku dan bertujuan untuk melakukan evaluasi ter-hadap analisis proyeksi demand barang dan penumpang yang terjadi di pelabuhan tersebut. Metode proyeksi yang dipakai adalah proyeksi deret waktu dan ekonometrik. Hasil proyeksi selanjutnya dibandingkan dengan data eksisting tahun 2018. Hasil studi ini menunjukkan bahwa proyeksi ekonometrik memberikan hasil yang cukup baik dalam memprediksi aktivitas bongkar barang serta jumlah penumpang naik dan turun di tahun 2018. Hal ini diindikasikan dengan selisih persentase hasil proyeksi terhadap data eksisting yang lebih kecil dari 10%. Sedangkan untuk aktivitas muat barang, proyeksi deret waktu dengan tren logaritmik memberikan hasil yang lebih baik daripada proyeksi ekonometrik. Kata-kata kunci: pelabuhan, rencana induk pelabuhan, pengembangan pelauhan, aktivitas bongkar barang


2020 ◽  
Vol 14 ◽  
Author(s):  
Xiao-bin Fan ◽  
Hao Li ◽  
Yu Jiang ◽  
Bing-xu Fan ◽  
Liang-jing Li

Background: Rolling mill vibration mechanism is very complex, and people haven't found a satisfactory vibration control method. Rolling interface is one of the vibration sources of the rolling mill system, and its friction and lubrication state has a great impact on the vibration of the rolling mill system. It is necessary to establish an accurate friction model for unsteady lubrication process of roll gap and a nonlinear vibration dynamic model for rolling process. In addition, it is necessary to obtain more direct and real rolling mill vibration characteristics from the measured vibration signals, and then study the vibration suppression method and design the vibration suppression device. Methods: This paper summarizes the friction lubrication characteristics of rolling interface and its influence on rolling mill vibration, as well as the dynamic friction model of rolling interface, the tribological model of unsteady lubrication process of roll gap, the non-linear vibration dynamic model of rolling process, the random and non-stationary dynamic behavior of rolling mill vibration, etc. At the same time, the research status of rolling mill vibration testing technology and vibration suppression methods were summarized. Time-frequency analysis of non-stationary vibration signals was reviewed, such as wavelet transform, Wigner-Ville distribution, empirical mode decomposition, blind source signal extraction, rolling vibration suppression equipment development. Results: The lubrication interface of the roller gap under vibration state presents unsteady dynamic characteristics. The signals generated by the vibration must be analyzed in time and frequency simultaneously. In the aspect of vibration suppression of rolling mill, the calculation of inherent characteristics should be carried out in the design of rolling mill to avoid dynamic defects such as resonance. When designing or upgrading the mill structure, it is necessary to optimize the structure of the work roll bending and roll shifting system, such as designing and developing the automatic adjustment mechanism of the gap between the roller bearing seat and the mill stand, adding floating support device to the drum shaped toothed joint shaft, etc. In terms of rolling technology, rolling vibration can be restrained by improving roll lubrication, reasonably distributing rolling force of each rolling mill, reducing rolling force of vibration prone rolling mill, increasing entrance temperature, reducing rolling inlet tension, reducing strip outlet temperature and reasonably arranging roll diameter. The coupling vibration can also be suppressed by optimizing the hydraulic servo system and the frequency conversion control of the motor. Conclusion: Under the vibration state, the lubrication interface of roll gap presents unsteady dynamic characteristics. The signal generated by vibration must be analyzed by time-frequency distribution. In the aspect of vibration suppression of rolling mill, the calculation of inherent characteristics should be carried out in the design of rolling mill to avoid dynamic defects such as resonance. It is necessary to optimize the structure of work roll bending and roll shifting system when designing or reforming the mill structure. In rolling process, rolling vibration can be restrained by improving roll lubrication, reasonably distributing rolling force of each rolling mill, increasing billet temperature, reasonably arranging roll diameter and reducing rolling inlet tension. Through the optimization of the hydraulic servo system and the frequency conversion control of the motor, the coupling vibration can be suppressed. The paper has important reference significance for vibration suppression of continuous rolling mill and efficient production of high quality strip products.


2021 ◽  
Vol 11 (9) ◽  
pp. 4121
Author(s):  
Hana Tomaskova ◽  
Erfan Babaee Tirkolaee

The purpose of this article was to demonstrate the difference between a pandemic plan’s textual prescription and its effective processing using graphical notation. Before creating a case study of the Business Process Model and Notation (BPMN) of the Czech Republic’s pandemic plan, we conducted a systematic review of the process approach in pandemic planning and a document analysis of relevant public documents. The authors emphasized the opacity of hundreds of pages of text records in an explanatory case study and demonstrated the effectiveness of the process approach in reengineering and improving the response to such a critical situation. A potential extension to the automation and involvement of SMART technologies or process optimization through process mining techniques is presented as a future research topic.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 764
Author(s):  
Jarosław Bartnicki ◽  
Yingxiang Xia ◽  
Xuedao Shu

The paper presents chosen aspects of the skew rolling process of hollow stepped products with the use of a skew rolling mill designed and manufactured at the Lublin University of Technology. This machine is characterized by the numerical control of spacing between the working rolls and the sequence of the gripper axial movement, which allows for the individual programming of the obtained shapes of parts such as stepped axles and shafts. The length of these zones and the values of possibly realizable cross-section reduction and obtained outlines are the subject of this research paper. The chosen results regarding the influence of the technological parameters used on the course of the process are shown in the present study. Numerical modelling using the finite element method in Simufact Forming, as well as the results of experimental tests performed in a skew rolling mill, were applied in the conducted research. The work takes into account the influence of cross-section reduction of the hollow parts and the feed rate per rotation on the metal flow mechanisms in the skew rolling process. The presented results concern the obtained dimensional deviations and changes in the wall thickness determining the proper choice of technological parameters for hollow parts formed by the skew rolling method. Knowledge about the cause of the occurrence of these limitations is very important for the development of this technology and the choice of the process parameters.


Author(s):  
Peng Lu ◽  
Xiao Cong ◽  
Dongdai Zhou

Nowadays, E-learning system has been widely applied to practical teaching. It was favored by people for its characterized course arrangement and flexible learning schedule. However, the system does have some problems in the process of application such as the functions of single software are not diversified enough to satisfy the requirements in teaching completely. In order to cater more applications in the teaching process, it is necessary to integrate functions from different systems. But the difference in developing techniques and the inflexibility in design makes it difficult to implement. The major reason of these problems is the lack of fine software architecture. In this article, we build domain model and component model of E-learning system and components integration method on the basis of WebService. And we proposed an abstract framework of E-learning which could express the semantic relationship among components and realize high level reusable on the basis of informationized teaching mode. On this foundation, we form an E-learning oriented layering software architecture contain component library layer, application framework layer and application layer. Moreover, the system contains layer division multiplexing and was not built upon developing language and tools. Under the help of the software architecture, we could build characterized E-learning system flexibly like building blocks through framework selection, component assembling and replacement. In addition, we exemplify how to build concrete E-learning system on the basis of this software architecture.


Sign in / Sign up

Export Citation Format

Share Document