scholarly journals DEVELOPMENT OF BIODEGRADABLE PACKAGING FILMS AND EDIBLE COATINGS FOR FOOD PRODUCTS BASED ON COMPOSITE MATERIALS

Author(s):  
Elena Eduardovna Kuprina ◽  
Anastasiya Nikolaevna Yakkola ◽  
Andrey Nikolaevich Manuylov ◽  
Olesya Kabysh ◽  
Marina Gavrilyevna Zhirkova ◽  
...  

Plastic is undoubtedly the most convenient type of packaging, but at the same time it is not ecologically friendly. The widespread use of packaging materials all over the world makes us think more and more about the harm of plastic to the environment and humans. It does not decompose in natural conditions and accumulates in huge quantities, because it is mostly used as a single-use packaging. Therefore, the development of environmentally friendly biodegradable edible films and coatings is relevant. Edible food packaging is an important step in food production and one of the innovative directions of food packaging development. This article presents materials on the development of the formulation and manufacturing technology of new composite materials based on sodium alginate and chitosan for the production of edible coatings and films. The results of the physical, chemical and bactericidal properties of these materials are presented.

2021 ◽  
Author(s):  
Urmila Choudhary ◽  
Basant Kumar Bhinchhar ◽  
Vinod Kumar Paswan ◽  
Sheela Kharkwal ◽  
Satya Prakash Yadav ◽  
...  

Mostly, food packaging employs synthetic materials obtained from nonrenewable sources. These packaging materials are based on petrochemicals and cause substantial environmental problems by producing massive amounts of non-biodegradable solid wastes. Edible coatings and films are considered as the potential solution to these problems of non-biodegradable packaging solid wastes for maintaining food-environment interactions, retaining food quality, and extending shelf life. In addition, edible coatings and films offer prevention from microbial spoilage of packed foods by controlling moisture and gas barrier characteristics. Increasing environmental concerns and consumer demands for high-quality eco-friendly packaging have fueled the advancement of innovative packaging technologies, for instance, the development of biodegradable films from renewable agricultural and food processing industry wastes. Therefore, the current chapter presents the application of edible coatings and films as an alternative to conventional packaging, emphasizing the fundamental characterization that these biodegradable packaging should hold for specific applications such as food preservation and shelf life enhancement. The primary employed components (e.g., biopolymers, bioactive, and additives components), manufacturing processes (for edible films or coatings), and their application to specific foods have all been given special consideration in this chapter. Besides, a future vision for the use of edible films and coatings as quality indicators for perishable foods is presented.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 767
Author(s):  
Elsa Díaz-Montes ◽  
Roberto Castro-Muñoz

Some of the current challenges faced by the food industry deal with the natural ripening process and the short shelf-life of fresh and minimally processed products. The loss of vitamins and minerals, lipid oxidation, enzymatic browning, and growth of microorganisms have been the main issues for many years within the innovation and improvement of food packaging, which seeks to preserve and protect the product until its consumption. Most of the conventional packaging are petroleum-derived plastics, which after product consumption becomes a major concern due to environmental damage provoked by their difficult degradation. In this sense, many researchers have shown interest in edible films and coatings, which represent an environmentally friendly alternative for food packaging. To date, chitosan (CS) is among the most common materials in the formulation of these biodegradable packaging together with polysaccharides, proteins, and lipids. The good film-forming and biological properties (i.e., antimicrobial, antifungal, and antiviral) of CS have fostered its usage in food packaging. Therefore, the goal of this paper is to collect and discuss the latest development works (over the last five years) aimed at using CS in the manufacture of edible films and coatings for food preservation. Particular attention has been devoted to relevant findings in the field, together with the novel preparation protocols of such biodegradable packaging. Finally, recent trends in new concepts of composite films and coatings are also addressed.


Author(s):  
Elena E. Kuprina ◽  
◽  
Anastasiya N. Yakkola ◽  
Andrey N. Manuylov ◽  
Elena I. Kiprushkina ◽  
...  

Food edible coatings are an important milestone in food production and one of the innovations in food packaging development. This article presents materials on the development of the formulation and technology for the manufacture of a novel composite coating based on sodium alginate, chitosan and protein hydrolysate obtained by the electrochemical method of double extraction from cod processing waste to obtain edible coatings for semi-finished fish products. Furthermore, the physicochemical, physical, mechanical and microbiological properties of this material are described.


Foods ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 170 ◽  
Author(s):  
Tugce Senturk Parreidt ◽  
Kajetan Müller ◽  
Markus Schmid

Alginate is a naturally occurring polysaccharide used in the bio industry. It is mainly derived from brown algae species. Alginate-based edible coatings and films attract interest for improving/maintaining quality and extending the shelf-life of fruit, vegetable, meat, poultry, seafood, and cheese by reducing dehydration (as sacrificial moisture agent), controlling respiration, enhancing product appearance, improving mechanical properties, etc. This paper reviews the most recent essential information about alginate-based edible coatings. The categorization of alginate-based coatings/film in food packaging concept is formed gradually with the explanation of the most important titles. Emphasis will be placed on active ingredients incorporated into alginate-based formulations, edible coating/film application methods, research and development studies of coated food products and mass transfer and barrier characteristics of the alginate-based coatings/films. Future trends are also reviewed to identify research gaps and recommend new research areas. The summarized information presented in this article will enable researchers to thoroughly understand the fundamentals of the coating process and to develop alginate-based edible films and coatings more readily.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Wenjun Ma ◽  
Sami Rokayya ◽  
Liang Xu ◽  
Xiaonan Sui ◽  
Lianzhou Jiang ◽  
...  

The effect of citric acid on the properties of soybean enzyme-assisted aqueous extraction processing (EAEP) residue edible film was studied. The washed soybean EAEP residue was produced by the process of EAEP. It was determined that the washed soybean EAEP residue is rich in fibers (76.10 ± 1.03%) and has lower oil and protein contents (7.74 ± 0.11% and 3.50 ± 0.20%, resp.). Edible films intended for food packaging have been produced from the washed EAEP residue combined with glycerol, different concentrations of citric acid (0%, 10%, 15%, 20%, 25%, and 30%), and sodium hypophosphite. The spectra have evidenced that the cross-linking reaction of citric acid and fibers has taken place in the residue. 30-CA films showed the highest tensile strength (17.52 MPa) and the lowest water vapor permeability (7.21 g·cm−1·s−1·Pa−1). Also, it indicated that citric acid can cross-link with the hydroxyls of polysaccharide and improve the compatibilization between the polymeric molecules to improve the intermolecular interaction between polysaccharide molecules, so that the water uptake is reduced. The smooth surface and better translucency of the films suggest that the EAEP residue films treated with citric acid are suitable for application in food packaging.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 249
Author(s):  
Elsa Díaz-Montes ◽  
Roberto Castro-Muñoz

Food preservation technologies are currently facing important challenges at extending the shelf-life of perishable food products (e.g., meat, fish, milk, eggs, and many raw fruits and vegetables) that help to meet the daily nutrient requirement demand. In addition, food preservation has gone beyond only preservation; the current techniques are focused on the fulfillment of two additional objectives, the suitability of the used processes and generation of environmentally friendly products with non-presence of any side effect on health. Moreover, they are also looking for additional nutritional properties. One of these preservation protocols deals with the use of edible films and coatings. Therefore, this review shows an overview of synthetic materials (e.g., glass, aluminum, plastic, and paperboard), as well as the regulations that limit their application in food packaging. Further, this review releases the current-state-of-the-art of the use of films and edible coatings as an alternative to conventional packaging, providing the main features that these biodegradable packaging should meet towards specific uses for the conservation and improvement of various food products. Herein, particular attention has been paid to the main used components (e.g., biopolymers, additives, bioactive, and probiotic components), manufacturing methods (for edible films or coatings) and their application to specific products. In addition, an outlook of the application of edible films and coatings as quality indicators of perishable products is shown.


Coatings ◽  
2015 ◽  
Vol 5 (4) ◽  
pp. 865-886 ◽  
Author(s):  
Arantzazu Valdés ◽  
Nuria Burgos ◽  
Alfonso Jiménez ◽  
María Garrigós

The most fashionable trends in food packaging research are targeted towards improvements in food quality and safety by increasing the use of environmentally-friendly materials, ideally those able to be obtained from bio-based resources and presenting biodegradable characteristics. Edible films represent a key area of development in new multifunctional materials by their character and properties to effectively protect food with no waste production. The use of edible films should be considered as a clean and elegant solution to problems related with waste disposal in packaging materials. In particular, pectin has been reported as one of the main raw materials to obtain edible films by its natural abundance, low cost and renewable character. The latest innovations in food packaging by the use of pectin-based edible films are reviewed in this paper, with special focus on the use of pectin as base material for edible coatings. The structure, properties related to the intended use in food packaging and main applications of pectins are herein reported.


2014 ◽  
Vol 6 (1) ◽  
pp. 27 ◽  
Author(s):  
Desi Mustika Amaliyah

Durian (Durio zibethinus) and cempedak (Artocarpus integer) peels waste are not used by the society. The research aim is to extract pectin from durian and cempedak peels and to formulate the pectin into edible films for food packaging. The research stages were first pre-treatment of durian and cempedak peels, pectin extraction, pectin drying, and  pectin application as edible films with concentration of 0%, 5%, and 15%. Based on this research it was concluded that pectin can be extracted from durian and cempedak peels with yield result of 27.97 % and 55.58 %, respectively. Edible film obtained has  similar characteristics between raw materials cempedak and durian peels. The higher concentration of cempedak peel  pectin increased the thickness, but decreased the tensile strength and elongation at a concentration of 15%. While in edible films from durian peel pectin, the higher concentration of pectin decreased the thickness of edible film on pectin concentration of 15%, lowered tensile strength and raised the edible film elongation.Keywords: waste, durian, cempedak, pectin extraction, edible film


2019 ◽  
Vol 23 (2) ◽  
pp. 193-198
Author(s):  
Monica Mironescu ◽  
Laura Fratila ◽  
Alexandru Hupert ◽  
Ion Dan Mironescu

Abstract This research investigates the physical-chemical, sensorial and mechanical characteristics of starch-based edible films incorporating three types of bee hive products: honey, propolis and bee bread, in concentrations varying from 1% to 3%, reported to starch. The results indicates an increasing of films moisture, water activity, ash content and acidity, in the order: honey<propolis<bee bread, all values increasing with the increasing of hive products percentage into the control film; aw is remaining at very low values, under 0.4. Sensorial analysis indicated honey as the better suited for improving taste and flavour and bee bread for increasing colour intensity of the films; the sensorial characteristics are maintained during 30 days of films storage, in all cases. Compared with the control starch-based film (which is elastic, brittle and hard), the films containing 2% bee hive products are elasto-plastic and more resistant to penetration, the resistance increasing in the order: bee bread<propolis<honey.


Sign in / Sign up

Export Citation Format

Share Document