scholarly journals Fabrication and Modelling of Tribological Performance of Al-Si/12Al2O3/2MoS2 Composite using Taguchi Technique

Author(s):  
HARI KIRAN VUDDAGIRI ◽  
Srinivas Vadapalli ◽  
Jaikumar Sagari ◽  
Sivasankara Raju R.

This paper investigates the effect of mechanical, microstructural and dry sliding wear behaviour of Al-Si/2wt%MoS2, Al-Si/12wt%Al2O3, and Al-Si/12wt% Al2O3/2wt%MoS2 composites that prepared using the stir-casting route. To avoid friction and wear at the interfaces of materials, an attempt has been made by adding solid lubricant MoS2 to build such a self-lubricating composite with Al-matrix. The tribological analysis has been described based on the Taguchi orthogonal array (L27). Three variables combination such as sliding velocity, sliding distance and contact pressure are used for this study to determine the tribological responses, i.e. wear rate and coefficient of friction. The properties of composites were improved by increasing the weight % of MoS2 and Al2O3. The tensile strength of Al-Si/2MoS2, Al-Si/12Al2O3, and Al-Si/12 Al2O3/2MoS2 composites is 6.02%, 12.46%, and 2.44% compared to the base matrix. The addition of MoS2 helps the hybrid composite to attain better tribological properties with a slightly lower specific strength. Analysis of variance showed that the composites such as Al-Si/2 MoS2 and Al-Si/12Al2O3/2MoS2 were strongly influenced by the pressure in wear rate. Similarly, sliding velocity affects the coefficient of friction for Al-Si/2MoS2. Wear tracks formed during the dry slide process were analysed using optical and SEM with an EDS. It was discovered that pressure plays a vital effect in the wear mechanism. The hybrid composite (Al-Si/12 Al2O3/2MoS2) material can be utilised in place of conventional materials in tribological demanding automotive applications

2020 ◽  
Vol 7 ◽  
pp. 16
Author(s):  
Poovalingam Muthu

In recent years, metal matrix composite (MMCs) have been receiving worldwide attention on account of their superior strength-to-weight ratio and stiffness. Among the several classes of composite materials, Aluminium matrix ceramic reinforcement composites have attracted increasing attention due to their unique properties such as better specific strength, specific stiffness, wear resistance, excellent corrosion resistance, high elastic modulus and light weight. The aim of the present investigation is to optimize the dry sliding wear parameters of Aluminum LM25 matrix reinforced with silicon carbide (SiC) (5 wt.%) and Copper (Cu) (3 wt.%) using Taguchi based grey relational analysis. In this work, the composite is prepared using stir casting method. The specimens are prepared according to ASTM standard. Using pin-on-disc apparatus, wear tests are conducted as per Taguchi's L9 orthogonal array and optimum wear parameters are identified with an objective to minimise the wear rate and coefficient of friction based on the grey relational grade. The effect of parameters on the wear rate and coefficient of friction was determined using Analysis of variance (ANOVA). Finally, the experimental results were verified using confirmation tests and the SEM analysis was carried out to study the wear mechanism.


Author(s):  
G Girish ◽  
V Anandakrishnan

In this work, the dry sliding wear behaviour of recursively friction stir processed AA7075 was investigated using a pin-on-disc wear testing apparatus. The microstructure of the processed specimen was probed using optical microscopy, transmission electron microscopy and atomic force microscopy. Experiments were conducted using Taguchi experimental design by varying three different parameters like load, sliding velocity and sliding distance, and the analysis of variance was performed to identify the influence of the parameters over the wear rate. From the main effect plot, the combination of 9.81 N of load, 2 m/s of sliding velocity and a sliding distance of 2000 m was identified as the optimum levels that minimize the wear rate. The regression model was developed to calculate the wear rate, and the validation test was performed with the optimum parameter combination and compared with the experimental results. Wear tracks were examined using field-emission scanning electron microscopy to identify the type of wear mechanism.


2017 ◽  
Vol 13 (3) ◽  
pp. 32-36
Author(s):  
S. Rajesh ◽  
C. Velmurugan

Metal matrix composite (MMC) focuses primarily on improved specific strength, high temperature and wear resistance application. Aluminum matrix reinforced with titanium carbide and molybdenum disulfide has good potential and also self-lubrication. The main challenge is to produce this composite in a cost effective way to meet the above requirements. In this study Al–TiC-MoS2 castings with different volume fraction of TiC and MoS2 were produced in an argon atmosphere by an enhanced stir casting method. Hardness of the composite has increased with higher % of TiC addition. At that same time self-lubrication of composite has occur in the effort of MoS2. Dry sliding wear behavior of AMC was analyses with the help of a pin on disc wear and friction monitor. The present analyses reveal the improved hardness  as well as wear resistance.


2021 ◽  
pp. 2150106
Author(s):  
P. C. ELUMALAI ◽  
R. GANESH

In this work, the dry sliding wear behaviors of pure monolithic magnesium and magnesium–titanium dioxide (Mg–TiO2) composites were studied using pin-on-disc tribometer against an oil-hardened nonshrinking die steel (OHNS) counter-disc with a normal load of 0.5–2[Formula: see text]kg and a sliding velocity of 1.5–2.5[Formula: see text][Formula: see text] with the sliding distance and wear track diameter of 1500[Formula: see text]m and 90[Formula: see text]mm, respectively. The pin samples were characterized for their microstructural, nanomechanical and tribological properties such as wear rate, coefficient of friction and wear fractographs. Scanning electron microscopy (SEM) was used to analyze the worn-out surfaces of each pin sample in order to identify the different types of wear and wear mechanisms and the chemical constituents of each element were quantified by energy-dispersive spectroscopy. The influence of TiO2 reinforcements on the nanomechanical behavior was studied by nanoindentation technique. As compared with pure Mg, the nanoindentation strengths of Mg–1.5TiO2, Mg–2.5TiO2 and Mg–5TiO2 composites were found to increase by 11.9%, 22.2% and 35.8%, respectively, which was due to the addition of TiO2 particles and also due to the good bonding at the interface of TiO2 and magnesium particles. From the wear test results, a significant change in wear rate was observed with the change in normal load than that of sliding speed, whereas a significant change in coefficient of friction was noticed with the changes in both normal load and sliding velocity. The dominant wear mechanisms involved under the testing conditions were identified through plotting the contour maps and SEM fractographs. Also, from the fractographs it was noticed that delamination and plowing effect have been the significant wear mechanisms observed during low wear rate of samples, whereas melting, delamination and oxidation wear have been observed during high wear rate of pure Mg and its composites.


2018 ◽  
Vol 928 ◽  
pp. 162-167 ◽  
Author(s):  
B.M. Muthamizh Selvan ◽  
V. Anandakrishnan ◽  
Muthukannan Duraiselvam ◽  
R. Venkatraman ◽  
S. Sathish

Composite materials with aluminium alloy 8011 matrix and 0, 4 and 8 weight percentages of ZrB2reinforcements were synthesized by in-situ stir casting process. The presence and homogeneous distribution of the reinforcements were examined with X-ray diffraction analysis and scanning electron microscopic analysis. To investigate the effect of dry sliding wear parameters such as sliding distance, percentage reinforcement, load, sliding velocity and temperature on wear rate and co-efficient of friction, experiments were conducted using a pin on disc wear tester as per Taguchi’s orthogonal array design and the tribological behaviour of synthesized composites was investigated by statistical techniques. Significance and the influence of the parameters over the response were determined by analysis of variances and grey relational analysis was used to find the optimal combination of parameters to obtain minimum wear rate and co-efficient of friction.


Author(s):  
N Radhika ◽  
Rakesh Reghunath ◽  
Manu Sam

The functionally graded Cu-11Ni-4Si/10wt%WC composite and its alloy have been synthesized using horizontal centrifugal casting technique to compare the mechanical and tribological improvement and its utility for bearings and bushes. Microstructure analysis and mechanical tests showed 43% improvement in hardness and 160% improvement in tensile strength at inner radial distances compared to the outer composite periphery. Fractural analysis showed ductility for alloy, whereas for composites, brittleness at outer and a combination of both ductility and brittleness were observed at inner. Proportional rise in the wear rate and coefficient of friction was observed with increasing load and sliding distances for both composite and alloy. Composite showed a slight decline in the wear rate and coefficient of friction with an increase in the sliding velocity, while alloy showed a linear rise. Worn surfaces analysis of composite showed the formation of oxide layers, which reduced the coefficient of friction at higher sliding velocity, resulting in lower wear rate.


2016 ◽  
Vol 22 (1) ◽  
pp. 24 ◽  
Author(s):  
P. Shanmughasundaram Palanisamy

Al alloy 7075 reinforced with Al<sub>2</sub>O<sub>3 </sub>particles of three different sizes (63,102, and 165 μm) were fabricated through the stir casting method. Dry sliding wear tests were conducted to evaluate the influence of load, sliding velocity and particle size on the wear loss and coefficient of friction of the composites using a pin-on-disc wear testing rig. Tests were conducted according to L9 Taguchi orthogonal array for three different loads (10, 30, and 50 N) at three different velocities (0.837, 1.674, and 2.512 m/s) for a constant time period of 30 minutes. The results showed that the wear increased with increasing load and sliding velocity whereas the coefficient of friction increased with increasing sliding velocity. On the contrary, the coefficient of friction decreased with increasing load. Composites reinforced with coarse Al<sub>2</sub>O<sub>3 </sub>particles exhibit superior wear resistance. It was found that the load was the most dominant factor influencing the wear loss and coefficient of friction followed by sliding velocity and particle size. A Scanning Electron Microscope (SEM) was used to study the morphology of the worn surfaces of the pins.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
P. Shanmughasundaram ◽  
R. Subramanian

Dry sliding wear behaviour of eutectic Al-Si alloy-graphite composites was investigated employing a pin-on-disc wear test rig. Results revealed that the wear and friction coefficients decreased linearly with increasing weight percentage of graphite particles. Wear resistance of the composite increased considerably with increasing sliding velocity at constant load. In contrast, the friction coefficient of Al-7.5 wt.% Gr composite increased when the sliding velocity was increased from 1 m/s to 2 m/s at 49 N. Worn-out surfaces of wear specimens after the test were examined by scanning electron microscopy to study the morphology of worn surfaces. EDS analysis was carried out to investigate the influence of mechanically mixed layer (MML) which comprises oxides and iron, and this acted as an effective tribolayer in enhancing the wear resistance at higher sliding velocity.


Author(s):  
S.R. Ruban ◽  
K.L.Dev. Wins ◽  
J.D.R. Selvam ◽  
A.A. Richard

This paper investigates the dry sliding wear behaviour of AA6061/ZrB2/SiC hybrid composite prepared by the stir casting. A pin-on-disc wear apparatus was used for this study. The effect of ZrB2 and SiC particulate content and normal load on wear rate was analyzed. The insitu fabricated ZrB2 and the reinforced SiC particles enhance the wear resistance of the AA6061 composite. The worn surface analysis of the composite as a function of ZrB2 and SiC particulate content and normal load are also presented.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4217
Author(s):  
Üsame Ali Usca ◽  
Mahir Uzun ◽  
Mustafa Kuntoğlu ◽  
Serhat Şap ◽  
Khaled Giasin ◽  
...  

Tribological properties of engineering components are a key issue due to their effect on the operational performance factors such as wear, surface characteristics, service life and in situ behavior. Thus, for better component quality, process parameters have major importance, especially for metal matrix composites (MMCs), which are a special class of materials used in a wide range of engineering applications including but not limited to structural, automotive and aeronautics. This paper deals with the tribological behavior of Cu-B-CrC composites (Cu-main matrix, B-CrC-reinforcement by 0, 2.5, 5 and 7.5 wt.%). The tribological characteristics investigated in this study are the coefficient of friction, wear rate and weight loss. For this purpose, four levels of sliding distance (1000, 1500, 2000 and 2500 m) and four levels of applied load (10, 15, 20 and 25 N) were used. In addition, two levels of sliding velocity (1 and 1.5 m/s), two levels of sintering time (1 and 2 h) and two sintering temperatures (1000 and 1050 °C) were used. Taguchi’s L16 orthogonal array was used to statistically analyze the aforementioned input parameters and to determine their best levels which give the desired values for the analyzed tribological characteristics. The results were analyzed by statistical analysis, optimization and 3D surface plots. Accordingly, it was determined that the most effective factor for wear rate, weight loss and friction coefficients is the contribution rate. According to signal-to-noise ratios, optimum solutions can be sorted as: the highest levels of parameters except for applied load and reinforcement ratio (2500 m, 10 N, 1.5 m/s, 2 h, 1050 °C and 0 wt.%) for wear rate, certain levels of all parameters (1000 m, 10 N, 1.5 m/s, 2 h, 1050 °C and 2.5 wt.%) for weight loss and 1000 m, 15 N, 1 m/s, 1 h, 1000 °C and 0 wt.% for the coefficient of friction. The comprehensive analysis of findings has practical significance and provides valuable information for a composite material from the production phase to the actual working conditions.


Sign in / Sign up

Export Citation Format

Share Document