scholarly journals Modeling the Effect of Deregulated Proliferation and Apoptosis on the Growth Dynamics of Epithelial Cell Populations In Vitro

2005 ◽  
Vol 88 (1) ◽  
pp. 62-75 ◽  
Author(s):  
Jörg Galle ◽  
Markus Loeffler ◽  
Dirk Drasdo
2017 ◽  
Vol 312 (2) ◽  
pp. G103-G111 ◽  
Author(s):  
Sabrina Jeppsson ◽  
Shanthi Srinivasan ◽  
Bindu Chandrasekharan

We have demonstrated that neuropeptide Y (NPY), abundantly produced by enteric neurons, is an important regulator of intestinal inflammation. However, the role of NPY in the progression of chronic inflammation to tumorigenesis is unknown. We investigated whether NPY could modulate epithelial cell proliferation and apoptosis, and thus regulate tumorigenesis. Repeated cycles of dextran sodium sulfate (DSS) were used to model inflammation-induced tumorigenesis in wild-type (WT) and NPY knockout ( NPY−/−) mice. Intestinal epithelial cell lines (T84) were used to assess the effects of NPY (0.1 µM) on epithelial proliferation and apoptosis in vitro. DSS-WT mice exhibited enhanced intestinal inflammation, polyp size, and polyp number (7.5 ± 0.8) compared with DSS- NPY−/− mice (4 ± 0.5, P < 0.01). Accordingly, DSS-WT mice also showed increased colonic epithelial proliferation (PCNA, Ki67) and reduced apoptosis (TUNEL) compared with DSS- NPY−/− mice. The apoptosis regulating microRNA, miR-375, was significantly downregulated in the colon of DSS-WT (2-fold, P < 0.01) compared with DSS- NPY−/−-mice. In vitro studies indicated that NPY promotes cell proliferation (increase in PCNA and β-catenin, P < 0.05) via phosphatidyl-inositol-3-kinase (PI3-K)-β-catenin signaling, suppressed miR-375 expression, and reduced apoptosis (increase in phospho-Bad). NPY-treated cells also displayed increased c-Myc and cyclin D1, and reduction in p21 ( P < 0.05). Addition of miR-375 inhibitor to cells already treated with NPY did not further enhance the effects induced by NPY alone. Our findings demonstrate a novel regulation of inflammation-induced tumorigenesis by NPY-epithelial cross talk as mediated by activation of PI3-K signaling and downregulation of miR-375. NEW & NOTEWORTHY Our work exemplifies a novel role of neuropeptide Y (NPY) in regulating inflammation-induced tumorigenesis via two modalities: first by enhanced proliferation (PI3-K/pAkt), and second by downregulation of microRNA-375 (miR-375)-dependent apoptosis in intestinal epithelial cells. Our data establish the existence of a microRNA-mediated cross talk between enteric neurons producing NPY and intestinal epithelial cells, and the potential of neuropeptide-regulated miRNAs as potential therapeutic molecules for the management of inflammation-associated tumors in the gut.


2021 ◽  
Author(s):  
Umut Kilik ◽  
Qianhui Yu ◽  
Rene Holtackers ◽  
Makiko Seimiya ◽  
Aline Xavier da Silveira dos Santos ◽  
...  

Methods to generate human intestinal tissue from pluripotent stem cells (PSCs) open new inroads into modeling intestine development and disease. However, current protocols require organoid transplantation into an immunocompromised mouse to achieve matured and differentiated epithelial cell states. Inspired by developmental reconstructions from primary tissues, we establish a regimen of inductive cues that enable stem cell maturation and epithelial differentiation entirely in vitro. We show that the niche factor Neuregulin1 (NRG1) promotes morphological change from proliferative epithelial cysts to matured epithelial tissue in three-dimensional cultures. Single-cell transcriptome analyses reveal differentiated epithelial cell populations, including diverse secretory and absorptive lineages. Comparison to multi-organ developmental and adult intestinal cell atlases confirm the specificity and maturation state of cell populations. Altogether, this work opens a new direction to use in vitro matured epithelium from human PSCs to study human intestinal epithelium development, disease, and evolution in controlled culture environments.


2019 ◽  
Vol 14 (4) ◽  
pp. 305-319 ◽  
Author(s):  
Marietta Herrmann ◽  
Franz Jakob

The bone marrow hosts skeletal progenitor cells which have most widely been referred to as Mesenchymal Stem or Stromal Cells (MSCs), a heterogeneous population of adult stem cells possessing the potential for self-renewal and multilineage differentiation. A consensus agreement on minimal criteria has been suggested to define MSCs in vitro, including adhesion to plastic, expression of typical surface markers and the ability to differentiate towards the adipogenic, osteogenic and chondrogenic lineages but they are critically discussed since the differentiation capability of cells could not always be confirmed by stringent assays in vivo. However, these in vitro characteristics have led to the notion that progenitor cell populations, similar to MSCs in bone marrow, reside in various tissues. MSCs are in the focus of numerous (pre)clinical studies on tissue regeneration and repair.Recent advances in terms of genetic animal models enabled a couple of studies targeting skeletal progenitor cells in vivo. Accordingly, different skeletal progenitor cell populations could be identified by the expression of surface markers including nestin and leptin receptor. While there are still issues with the identity of, and the overlap between different cell populations, these studies suggested that specific microenvironments, referred to as niches, host and maintain skeletal progenitor cells in the bone marrow. Dynamic mutual interactions through biological and physical cues between niche constituting cells and niche inhabitants control dormancy, symmetric and asymmetric cell division and lineage commitment. Niche constituting cells, inhabitant cells and their extracellular matrix are subject to influences of aging and disease e.g. via cellular modulators. Protective niches can be hijacked and abused by metastasizing tumor cells, and may even be adapted via mutual education. Here, we summarize the current knowledge on bone marrow skeletal progenitor cell niches in physiology and pathophysiology. We discuss the plasticity and dynamics of bone marrow niches as well as future perspectives of targeting niches for therapeutic strategies.


1997 ◽  
Vol 272 (2) ◽  
pp. F222-F228
Author(s):  
C. Kjelsberg ◽  
H. Sakurai ◽  
K. Spokes ◽  
C. Birchmeier ◽  
I. Drummond ◽  
...  

The growth factor/receptor combination of hepatocyte growth factor (HGF)/c-met has been postulated to be critical for mesenchymal-to-epithelial conversion and tubule formation in the developing kidney. We therefore isolated and immortalized cells from embryonic kidneys of met -/- transgenic mice to determine whether these cells were epithelial and able to chemotax and form tubules in vitro. The cells were immortalized with retrovirus expressing human papillomavirus 16 (HPV 16) E6/E7 genes. Two rapidly dividing clones were isolated and found to express the epithelial cell markers cytokeratin, zonula occludens-1, and E-cadherin but not to express the fibroblast marker vimentin. The met -/- cells were able to chemotax in response to epidermal growth factor and transforming growth factor-alpha (TGF-alpha) and form tubules in vitro in response to TGF-alpha but not HGF. These experiments suggest that the HGF/c-met axis is not essential for epithelial cell development in the embryonic kidney and demonstrate that other growth factors are capable of supporting early tubulogenesis.


Odontology ◽  
2021 ◽  
Author(s):  
Sarita Giri ◽  
Ayuko Takada ◽  
Durga Paudel ◽  
Koki Yoshida ◽  
Masae Furukawa ◽  
...  

2021 ◽  
Vol 20 ◽  
pp. 153303382198981
Author(s):  
Xin-bo Sun ◽  
Yong-wei Chen ◽  
Qi-sheng Yao ◽  
Xu-hua Chen ◽  
Min He ◽  
...  

Background: Prostate cancer is a common malignant tumor with a high incidence. MicroRNAs (miRNAs) have been shown to be important post-transcriptional regulators during tumorigenesis. This study aimed to explore the effect of miR-144 on PCa proliferation and apoptosis. Material and Methods: The expression of miR-144 and EZH2 were examined in clinical PCa tissues. PCa cell line LNCAP and DU-145 was employed and transfected with miR-144 mimics or inhibitors. The correlation between miR-144 and EZH2 was verified by luciferase reporter assay. Cell viability, apoptosis and migratory capacity were detected by CCK-8, flow cytometry assay and wound healing assay. The protein level of EZH2, E-Cadherin, N-Cadherin and vimentin were analyzed by western blotting. Results: miR-144 was found to be negatively correlated to the expression of EZH2 in PCa tissues. Further studies identified EZH2 as a direct target of miR-144. Moreover, overexpression of miR-144 downregulated expression of EZH2, reduced cell viability and promoted cell apoptosis, while knockdown of miR-144 led to an inverse result. miR-144 also suppressed epithelial-mesenchymal transition level of PCa cells. Conclusion: Our study indicated that miR-144 negatively regulate the expression of EZH2 in clinical specimens and in vitro. miR-144 can inhibit cell proliferation and induce cell apoptosis in PCa cells. Therefore, miR-144 has the potential to be used as a biomarker for predicting the progression of PCa.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1652
Author(s):  
Dorota Katarzyńska-Banasik ◽  
Anna Kozubek ◽  
Małgorzata Grzesiak ◽  
Andrzej Sechman

The continuous development of poultry production related to the growing demand for eggs and chicken meat makes it necessary to use modern technologies. An answer to this demand may be the use of nanotechnology in poultry farming. One of the promising nanomaterials in this field are silver nanoparticles (AgNPs), which are used as disinfectants, reducing microbial pollution and the amounts of greenhouse gases released. This study aimed to evaluate the effect of AgNPs on the proliferation and apoptosis process in the granulosa cells of chicken preovulatory follicles. The in vitro culture experiment revealed that both 13 nm and 50 nm AgNPs inhibited the proliferation of the granulosa cells. However, a faster action was observed in 50 nm AgNPs than in 13 nm ones. A size-dependent effect of AgNP was also demonstrated for the caspase-3 activity. AgNPs 13 nm in size increased the caspase-3 activity in granulosa cells, while 50 nm AgNPs did not exert an effect, which may indicate the induction of distinct cell death pathways by AgNPs. In conclusion, our study reveals that AgNPs in vitro inhibit granulosa cell proliferation and stimulate their apoptosis. These results suggest that AgNPs may disrupt the final stage of preovulatory follicle maturation and ovulation.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A120-A120
Author(s):  
Sashi Kasimsetty ◽  
Himavanth Gatla ◽  
Dhana Chinnasamy

BackgroundMCY-M11, an anti-mesothelin CAR (Meso-CAR) mRNA transfected PBMC cell product manufactured through <1 day-process is under clinical evaluation for the treatment of advanced ovarian cancer and peritoneal mesothelioma. In this in-vitro study, we characterized the phenotypic and functional status of immune cell populations in MCY-M11 and their possible role in antitumor immunity.MethodsMCY-M11 cell product were generated using unmanipulated healthy donor PBMCs (n=5) by transfection of Meso-CAR mRNA using MaxCyte’s proprietary Flow Electroporation® system. Frozen MCY-M11 cell product was thawed and cultured for 18 hours, then co-cultured with hMSLNneg or hMSLNpos human mesothelioma cell line, MSTO-211H, or stimulated with anti-CD3/anti-CD28 antibodies in vitro for 8 days. Distinct cell populations in MCY-M11 were evaluated for kinetics and duration of CAR expression, differentiation, activation, exhaustion, and their ability to secrete various immunomodulatory molecules during in vitro stimulation. Antigen-specific proliferation and cytotoxicity of MCY-M11 against hMSLNpos tumor cells as well as their ability to mount long-term antitumor immunity through epitope spreading mechanisms were studied.ResultsIndividual cell populations in MCY-M11 exhibited a consistent but transient Meso-CAR expression persisting for about 7 days. Cell subsets in MCY-M11 acquired early signs of activation and differentiation within 18–24 hours post-culture, but only attained full activation and lineage-specific differentiation upon specific response to hMSLNpos tumor cells. hMSLN antigen experienced MCY-M11 retained significant fractions of Naïve and Central Memory T cells and increased percentage of Effector Memory T cells along with increased expression of CD62L, CD27, and chemokine receptors (CCR5, CCR7, and CXCR3). MCY-M11 exhibited strong antigen-specific cytotoxicity against hMSLNpos tumor cells with corresponding increase in activation and proliferation of CD4+ and CD8+ T cell subsets and displayed low or no acquisition of known exhaustion markers. NK cells also exhibited a functionally superior molecular signature exhibiting increased levels of NKG2D, NKp44, NKp46, FAS, and TRAIL. The Monocytes and B cells in MCY-M11 also acquired an activated, differentiated, and mature phenotype, expressing molecules required for antigen presentation (HLA-DR, HLA-ABC, and CD205) and T cell co-stimulation (CD80 and CD86) to mount a strong antitumor response. These phenotypic changes in cell subsets of MCY-M11 transpired with simultaneous secretion of potent immunostimulatory molecules and chemokines facilitating an extended antitumor response through epitope spreading.ConclusionsWe demonstrated that MCY-M11 is a unique cell product possessing a complete built-in immune cellular machinery with favorable phenotype and enhanced functions specialized in mediating an effective and long-term antitumor response.Trial RegistrationNCT03608618


Sign in / Sign up

Export Citation Format

Share Document