scholarly journals Morphological Characterization and Physical Dormancy of Bauhinia winitii Seed: Living Collection of Purwodadi Botanic Garden

2021 ◽  
Vol 13 (2) ◽  
pp. 195-200
Author(s):  
Dewi Ayu Lestari ◽  
Elok Rifqi Firdiana

Bauhinia winitii Craib (Fabaceae, Caesalpinioideae) is a woody climber which is currently included in endangered species list. B. winitii seeds are orthodox seeds in which it has hard coat morphologically. Therefore, B. winitii seeds often undergo physical dormancy which can be broken through immersion in certain liquid media. This study aimed to characterize the morphology of B. winitii seeds and determine the pre-sowing treatment method to accelerate the seeds germination of B. winitii. External morphological characterization was carried out by observing the seeds quantitative and qualitative parameters. Characterization of seeds internal morphology was conducted using a digital microscope. Physical dormancy breaking was carried out by immersion in warm and cold water for 24 hours. Morphological characterization data were analyzed descriptively, while seed germination data were analyzed quantitatively by using one-way ANOVA followed by LSD test (with  confidence level of 95%). B. winitii has pod-shaped fruits with 2-6 seeds per pod, the seeds are 1.36 cm x 1 cm in size, 0.47 cm thick and weighed 0.5 g, oblong to conical in shape, smooth and shine surface, with light to dark brown in color. Seeds immersion treatment in warm water could break the physical dormancy of B. winitii seeds thus 63% of the seeds were able to germinate and it was significantly different compared to control and cold water immersion treatment. Technical to germinate B. winitii seed can be known from pre-sowing treatment. This study can be used as a reference for seed identification and germination technical of B. winitii seed.

2021 ◽  
Vol 32 (2) ◽  
pp. 138-141
Author(s):  
Ranajit Sen Chowdhury ◽  
Md Daharul Islam ◽  
Khaleda Akter ◽  
Mohammad Abdus Sattar Sarkar ◽  
Tanima Roy ◽  
...  

Hydrotherapy is a procedure where water of different temperatures are used to relieve pain and treat illness. This review describes about different conditions of water treatments. Hydrotherapy can help treat a variety of conditions, including arthritis, stomach problems, sleep disorders, stress and depression. The theory behind hydrotherapy is that water has healing properties that can mitigate various ailments and conditions. Different states of water such as ice, liquid, and steam is used in the treatment of various conditions. Water cure therapies comprise enema therapy, gel therapy etc. and also includes colonic hydrotropic, sitz bath, hydro-massage, wraps and compress methods. Cryotherapy, cold water immersion or ice bath could be a new treatment method thatis used by physical therapists, sports medicine facilities and rehab clinics. Bangladesh J Medicine July 2021; 32(2) : 138-141


2014 ◽  
Vol 222 (3) ◽  
pp. 165-170 ◽  
Author(s):  
Andrew L. Geers ◽  
Jason P. Rose ◽  
Stephanie L. Fowler ◽  
Jill A. Brown

Experiments have found that choosing between placebo analgesics can reduce pain more than being assigned a placebo analgesic. Because earlier research has shown prior experience moderates choice effects in other contexts, we tested whether prior experience with a pain stimulus moderates this placebo-choice association. Before a cold water pain task, participants were either told that an inert cream would reduce their pain or they were not told this information. Additionally, participants chose between one of two inert creams for the task or they were not given choice. Importantly, we also measured prior experience with cold water immersion. Individuals with prior cold water immersion experience tended to display greater placebo analgesia when given choice, whereas participants without this experience tended to display greater placebo analgesia without choice. Prior stimulus experience appears to moderate the effect of choice on placebo analgesia.


1999 ◽  
Vol 87 (1) ◽  
pp. 243-246 ◽  
Author(s):  
John W. Castellani ◽  
Andrew J. Young ◽  
James E. Kain ◽  
Michael N. Sawka

This study examined how time of day affects thermoregulation during cold-water immersion (CWI). It was hypothesized that the shivering and vasoconstrictor responses to CWI would differ at 0700 vs. 1500 because of lower initial core temperatures (Tcore) at 0700. Nine men were immersed (20°C, 2 h) at 0700 and 1500 on 2 days. No differences ( P > 0.05) between times were observed for metabolic heat production (M˙, 150 W ⋅ m−2), heat flow (250 W ⋅ m−2), mean skin temperature (T sk, 21°C), and the mean body temperature-change in M˙(ΔM˙) relationship. Rectal temperature (Tre) was higher ( P < 0.05) before (Δ = 0.4°C) and throughout CWI during 1500. The change in Tre was greater ( P < 0.05) at 1500 (−1.4°C) vs. 0700 (−1.2°C), likely because of the higher Tre-T skgradient (0.3°C) at 1500. These data indicate that shivering and vasoconstriction are not affected by time of day. These observations raise the possibility that CWI may increase the risk of hypothermia in the early morning because of a lower initial Tcore.


2009 ◽  
Vol 65 (1) ◽  
Author(s):  
D.V. Van Wyk ◽  
M.I. Lambert

Objective: The main aim of this study was to determine strategies used toaccelerate recovery of elite rugby players after training and matches, asused by medical support staff of rugby teams in South A frica. A  secondaryaim was to focus on specifics of implementing ice/cold water immersion asrecovery strategy. Design: A  Questionnaire-based cross sectional descriptive survey was used.Setting and Participants: Most (n=58) of the medical support staff ofrugby teams (doctors, physiotherapists, biokineticists and fitness trainers)who attended the inaugural Rugby Medical A ssociation conference linked to the South A frican Sports MedicineA ssociation Conference in Pretoria (14-16th November, 2007) participated in the study. Results: Recovery strategies were utilized mostly after matches. Stretching and ice/cold water immersion were utilized the most (83%). More biokineticists and fitness trainers advocated the usage of stretching than their counter-parts (medical doctors and physiotherapists). Ice/Cold water immersion and A ctive Recovery were the top two ratedstrategies. A  summary of the details around implementation of ice/cold water therapy is shown (mean) as utilized bythe subjects: (i) The time to immersion after matches was 12±9 min; (ii) The total duration of one immersion sessionwas 6±6 min; (iii) 3 immersion sessions per average training week was utilized by subjects; (iv) The average water temperature was 10±3 ºC.; (v) Ice cubes were used most frequently to cool water for immersion sessions, and(vi) plastic drums were mostly used as the container for water. Conclusion: In this survey the representative group of support staff provided insight to which strategies are utilizedin South A frican elite rugby teams to accelerate recovery of players after training and/or matches.


2017 ◽  
Vol 313 (4) ◽  
pp. R372-R384 ◽  
Author(s):  
James R. Broatch ◽  
Aaron Petersen ◽  
David J. Bishop

We investigated the underlying molecular mechanisms by which postexercise cold-water immersion (CWI) may alter key markers of mitochondrial biogenesis following both a single session and 6 wk of sprint interval training (SIT). Nineteen men performed a single SIT session, followed by one of two 15-min recovery conditions: cold-water immersion (10°C) or a passive room temperature control (23°C). Sixteen of these participants also completed 6 wk of SIT, each session followed immediately by their designated recovery condition. Four muscle biopsies were obtained in total, three during the single SIT session (preexercise, postrecovery, and 3 h postrecovery) and one 48 h after the last SIT session. After a single SIT session, phosphorylated (p-)AMPK, p-p38 MAPK, p-p53, and peroxisome proliferator-activated receptor-γ coactivator-1α ( PGC-1α) mRNA were all increased ( P < 0.05). Postexercise CWI had no effect on these responses. Consistent with the lack of a response after a single session, regular postexercise CWI had no effect on PGC-1α or p53 protein content. Six weeks of SIT increased peak aerobic power, maximal oxygen consumption, maximal uncoupled respiration (complexes I and II), and 2-km time trial performance ( P < 0.05). However, regular CWI had no effect on changes in these markers, consistent with the lack of response in the markers of mitochondrial biogenesis. Although these observations suggest that CWI is not detrimental to endurance adaptations following 6 wk of SIT, they question whether postexercise CWI is an effective strategy to promote mitochondrial biogenesis and improvements in endurance performance.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Chikao Ito ◽  
Isao Takahashi ◽  
Miyuki Kasuya ◽  
Kyoji Oe ◽  
Masahito Uchino ◽  
...  

Medicine ◽  
2016 ◽  
Vol 95 (1) ◽  
pp. e2455 ◽  
Author(s):  
Simon S. Yeung ◽  
Kin Hung Ting ◽  
Maurice Hon ◽  
Natalie Y. Fung ◽  
Manfi M. Choi ◽  
...  

2015 ◽  
Vol 309 (4) ◽  
pp. R389-R398 ◽  
Author(s):  
Llion A. Roberts ◽  
Makii Muthalib ◽  
Jamie Stanley ◽  
Glen Lichtwark ◽  
Kazunori Nosaka ◽  
...  

Cold water immersion (CWI) and active recovery (ACT) are frequently used as postexercise recovery strategies. However, the physiological effects of CWI and ACT after resistance exercise are not well characterized. We examined the effects of CWI and ACT on cardiac output (Q̇), muscle oxygenation (SmO2), blood volume (tHb), muscle temperature (Tmuscle), and isometric strength after resistance exercise. On separate days, 10 men performed resistance exercise, followed by 10 min CWI at 10°C or 10 min ACT (low-intensity cycling). Q̇ (7.9 ± 2.7 l) and Tmuscle (2.2 ± 0.8°C) increased, whereas SmO2 (−21.5 ± 8.8%) and tHb (−10.1 ± 7.7 μM) decreased after exercise ( P < 0.05). During CWI, Q̇ (−1.1 ± 0.7 l) and Tmuscle (−6.6 ± 5.3°C) decreased, while tHb (121 ± 77 μM) increased ( P < 0.05). In the hour after CWI, Q̇ and Tmuscle remained low, while tHb also decreased ( P < 0.05). By contrast, during ACT, Q̇ (3.9 ± 2.3 l), Tmuscle (2.2 ± 0.5°C), SmO2 (17.1 ± 5.7%), and tHb (91 ± 66 μM) all increased ( P < 0.05). In the hour after ACT, Tmuscle, and tHb remained high ( P < 0.05). Peak isometric strength during 10-s maximum voluntary contractions (MVCs) did not change significantly after CWI, whereas it decreased after ACT (−30 to −45 Nm; P < 0.05). Muscle deoxygenation time during MVCs increased after ACT ( P < 0.05), but not after CWI. Muscle reoxygenation time after MVCs tended to increase after CWI ( P = 0.052). These findings suggest first that hemodynamics and muscle temperature after resistance exercise are dependent on ambient temperature and metabolic demands with skeletal muscle, and second, that recovery of strength after resistance exercise is independent of changes in hemodynamics and muscle temperature.


Sign in / Sign up

Export Citation Format

Share Document