HEMMUNG DER UTERUSWIRKUNG VON OXYTOCIN DURCH GESTAGENE

1965 ◽  
Vol 48 (4) ◽  
pp. 645-655 ◽  
Author(s):  
F. Neumann ◽  
R. Hempel

ABSTRACT In vivo Assays: Oil and water-soluble steroids have been investigated for their oxytocin-antagonism in pregnant rabbits treated with oxytocin. The uterine immobilizing effect is more marked after treatment with hydroxyprogesterone-derivatives than following the administration of 19-nor-testosterone-derivatives. In vivo investigations on the latent period show the following: after intramuscular administration of a micro-crystalline suspension, the latent period is 2–3 hours and is at least three hours following the administration of an oily solution. The maximum activity of the oily solution is obtained after 6 hours at the earliest and this occurs even later following the administration of the micro-crystalline suspension. There is no difference in latent period between the intravenous and intramuscular administration of micro-crystalline suspension. The water-soluble progestational agents examined in in vivo tests are 17-hemi-sulphate-esters of various 17α-hydroxyprogesterone-derivatives, Except for one compound* it was possible to prevent the oxytocin induced abortion with all substances in vivo. However, to achieve the inhibitory effect, very high doses of the water-soluble progestational agents were required. The duration of activity of these substances is limited to 2–3 hours. In vitro Assays: In addition, the water-soluble compounds were, with one exception also tested in vitro on the isolated rat uterus. It was possible to suppress the oxytocin-induced single contraction of the rat uterus.

PEDIATRICS ◽  
1967 ◽  
Vol 40 (6) ◽  
pp. 993-999
Author(s):  
Barbara Jones

In vitro studies using a mouse liver microsome system failed to demonstrate that menadiol sodium diphosphate, menadione sodium bisulfite, or phytonadione enhanced or inhibited the quantity of ortho-aminophenol glucuronide produced. In vivo studies in young rats with these vitamin K analogues also failed to show an effect on glucuronide conjugation. Based on this data, it is concluded that the hyperbilirubinemia seen in prematures after large doses of water-soluble vitamin K analogues is probably not due to an inhibitory effect of glucuronyl transferase. The evidence suggesting that it may be due in part to hemolysis is briefly reviewed.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2452
Author(s):  
Soumia El boumlasy ◽  
Federico La Spada ◽  
Nunzio Tuccitto ◽  
Giovanni Marletta ◽  
Carlos Luz Mínguez ◽  
...  

(1) Background: This study was aimed at determining the in vitro inhibitory effect of new natural substances obtained by minimal processing from shrimp wastes on fungi and oomycetes in the genera Alternaria, Colletotrichum, Fusarium, Penicillium, Plenodomus and Phytophthora; the effectiveness of the substance with the highest in vitro activity in preventing citrus and apple fruit rot incited by P. digitatum and P. expansum, respectively, was also evaluated. (2) Methods: The four tested substances, water-extract, EtOAc-extract, MetOH-extract and nitric-extract, were analyzed by HPLC-ESI-MS-TOF; in vitro preliminary tests were carried out to determine the minimal inhibitory/fungicidal concentrations (MIC and MFC, respectively) of the raw dry powder, EtOAc-extract, MetOH-extract and nitric-extract for each pathogen. (3) Results: in the agar-diffusion-assay, nitric-extract showed an inhibitory effect on all pathogens, at all concentrations tested (100, 75, 50 and 25%); the maximum activity was on Plenodomus tracheiphilus, C. gloeosporioides and Ph. nicotianae; the diameters of inhibition halos were directly proportional to the extract concentration; values of MIC and MFC of this extract for all pathogens ranged from 2 to 3.5%; the highest concentrations (50 to 100%) tested in vivo were effective in preventing citrus and apple fruit molds. (4) Conclusions: This study contributes to the search for natural and ecofriendly substances for the control of pre- and post-harvest plant pathogens.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1776
Author(s):  
Lingling Qi ◽  
Chao Liu ◽  
Yingying Zhang ◽  
Zheao Zhang ◽  
Hongxia Duan ◽  
...  

Micelle is mainly used for drug delivery and is prepared from amphiphilic block copolymers. It can be formed into an obvious core-shell structure that can incorporate liposoluble drugs. However, micelles are not suitable for the encapsulation of water-soluble drugs, and it is also difficult to maintain stability in the systemic circulation. To solve these problems, a type of polymer material, Fmoc-Lys-PEG and Fmoc-Lys-PEG-RGD, was designed and synthesized. These copolymers could self-assemble into micelles driven by π–π stacking and the hydrophobic interaction of 9-fluorenylmethoxycarbony (Fmoc) and, at the same time, form a framework for a hydrogen-bonding environment in the core. Mitomycin C (MMC), as a water-soluble drug, can be encapsulated into micelles by hydrogen-bonding interactions. The interaction force between MMC and the polymers was analyzed by molecular docking simulation and Fourier transform infrared (FTIR). It was concluded that the optimal binding conformation can be obtained, and that the main force between the MMC and polymers is hydrogen bonding. Different types of MMC nanoparticles (NPs) were prepared and the physicochemical properties of them were systematically evaluated. The pharmacodynamics of the MMC NPs in vitro and in vivo were also studied. The results show that MMC NPs had a high uptake efficiency, could promote cell apoptosis, and had a strong inhibitory effect on cell proliferation. More importantly, the as-prepared NPs could effectively induce tumor cell apoptosis and inhibit tumor growth and metastasis in vivo.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4353
Author(s):  
Wei-Lun Qiu ◽  
Wei-Hung Hsu ◽  
Shu-Ming Tsao ◽  
Ai-Jung Tseng ◽  
Zhi-Hu Lin ◽  
...  

Lung cancer has the highest global mortality rate of any cancer. Although targeted therapeutic drugs are commercially available, the common drug resistance and insensitivity to cisplatin-based chemotherapy, a common clinical treatment for lung cancer, have prompted active research on alternative lung cancer therapies and methods for mitigating cisplatin-related complications. In this study, we investigated the effect of WSG, a glucose-rich, water soluble polysaccharide derived from Ganoderma lucidum, on cisplatin-based treatment for lung cancer. Murine Lewis lung carcinoma (LLC1) cells were injected into C57BL/6 mice subcutaneously and through the tail vein. The combined administration of WSG and cisplatin effectively inhibited tumor growth and the formation of metastatic nodules in the lung tissue of the mice. Moreover, WSG increased the survival rate of mice receiving cisplatin. Co-treatment with WSG and cisplatin induced a synergistic inhibitory effect on the growth of lung cancer cells, enhancing the apoptotic responses mediated by cisplatin. WSG also reduced the cytotoxic effect of cisplatin in both macrophages and normal lung fibroblasts. Our findings suggest that WSG can increase the therapeutic effectiveness of cisplatin. In clinical settings, WSG may be used as an adjuvant or supplementary agent.


1973 ◽  
Vol 30 (02) ◽  
pp. 315-326
Author(s):  
J. Heinz Joist ◽  
Jean-Pierre Cazenave ◽  
J. Fraser Mustard

SummarySodium pentobarbital (SPB) and three other barbituric acid derivatives were found to inhibit platelet function in vitro. SPB had no effect on the primary response to ADP of platelets in platelet-rich plasma (PRP) or washed platelets but inhibited secondary aggregation induced by ADP in human PRP. The drug inhibited both phases of aggregation induced by epinephrine. SPB suppressed aggregation and the release reaction induced by collagen or low concentrations of thrombin, and platelet adherence to collagen-coated glass tubes. The inhibition by SPB of platelet aggregation was readily reversible and isotopically labeled SPB did not become firmly bound to platelets. No inhibitory effect on platelet aggregation induced by ADP, collagen, or thrombin could be detected in PRP obtained from rabbits after induction of SPB-anesthesia.


1976 ◽  
Vol 36 (02) ◽  
pp. 401-410 ◽  
Author(s):  
Buichi Fujttani ◽  
Toshimichi Tsuboi ◽  
Kazuko Takeno ◽  
Kouichi Yoshida ◽  
Masanao Shimizu

SummaryThe differences among human, rabbit and guinea-pig platelet adhesiveness as for inhibitions by adenosine, dipyridamole, chlorpromazine and acetylsalicylic acid are described, and the influence of measurement conditions on platelet adhesiveness is also reported. Platelet adhesiveness of human and animal species decreased with an increase of heparin concentrations and an increase of flow rate of blood passing through a glass bead column. Human and rabbit platelet adhesiveness was inhibited in vitro by adenosine, dipyridamole and chlorpromazine, but not by acetylsalicylic acid. On the other hand, guinea-pig platelet adhesiveness was inhibited by the four drugs including acetylsalicylic acid. In in vivo study, adenosine, dipyridamole and chlorpromazine inhibited platelet adhesiveness in rabbits and guinea-pigs. Acetylsalicylic acid showed the inhibitory effect in guinea-pigs, but not in rabbits.


Author(s):  
Venu Madhav K ◽  
Somnath De ◽  
Chandra Shekar Bonagiri ◽  
Sridhar Babu Gummadi

Fenofibrate (FN) is used in the treatment of hypercholesterolemia. It shows poor dissolution and poor oral bioavailability after oral administration due to high liphophilicity and low aqueous solubility. Hence, solid dispersions (SDs) of FN (FN-SDs) were develop that might enhance the dissolution and subsequently oral bioavailability. FN-SDs were prepared by solvent casting method using different carriers (PEG 4000, PEG 6000, β cyclodextrin and HP β cyclodextrin) in different proportions (0.25%, 0.5%, 0.75% and 1% w/v). FN-SDs were evaluated solubility, assay and in vitro release studies for the optimization of SD formulation. Differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM) analysis was performed for crystalline and morphology analysis, respectively. Further, optimized FN-SD formulation evaluated for pharmacokinetic performance in Wistar rats, in vivo in comparison with FN suspension.  From the results, FN-SD3 and FN-SD6 have showed 102.9 ±1.3% and 105.5±3.1% drug release, respectively in 2 h. DSC and PXRD studies revealed that conversion of crystalline to amorphous nature of FN from FT-SD formulation. SEM studies revealed the change in the orientation of FN when incorporated in SDs. The oral bioavailability FN-SD3 and FN-SD6 formulations exhibited 2.5-folds and 3.1-folds improvement when compared to FN suspension as control. Overall, SD of FN could be considered as an alternative dosage form for the enhancement of oral delivery of poorly water-soluble FN.


2018 ◽  
Vol 15 (6) ◽  
pp. 531-543 ◽  
Author(s):  
Dominik Szwajgier ◽  
Ewa Baranowska-Wojcik ◽  
Kamila Borowiec

Numerous authors have provided evidence regarding the beneficial effects of phenolic acids and their derivatives against Alzheimer's disease (AD). In this review, the role of phenolic acids as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) is discussed, including the structure-activity relationship. In addition, the inhibitory effect of phenolic acids on the formation of amyloid β-peptide (Aβ) fibrils is presented. We also cover the in vitro, ex vivo, and in vivo studies concerning the prevention and treatment of the cognitive enhancement.


2018 ◽  
Vol 18 (4) ◽  
pp. 365-371 ◽  
Author(s):  
Denis V. Mishchenko ◽  
Margarita E. Neganova ◽  
Elena N. Klimanova ◽  
Tatyana E. Sashenkova ◽  
Sergey G. Klochkov ◽  
...  

Background: Anti-tumor effect of hydroxamic acid derivatives is largely connected with its properties as efficient inhibitors of histone deacetylases, and other metalloenzymes involved in carcinogenesis. Objective: The work was aimed to (i) determine the anti-tumor and chemosensitizing activity of the novel racemic spirocyclic hydroxamic acids using experimental drug sensitive leukemia P388 of mice, and (ii) determine the structure-activity relationships as metal chelating and HDAC inhibitory agents. Method: Outbreed male rat of 200-220 g weights were used in biochemical experiments. In vivo experiments were performed using the BDF1 hybrid male mice of 22-24 g weight. Lipid peroxidation, Fe (II) -chelating activity, HDAC fluorescent activity, anti-tumor and anti-metastatic activity, acute toxicity techniques were used in this study. Results: Chemosensitizing properties of water soluble cyclic hydroxamic acids (CHA) are evaluated using in vitro activities and in vivo methods and found significant results. These compounds possess iron (II) chelating properties, and slightly inhibit lipid peroxidation. CHA prepared from triacetonamine (1a-e) are more effective Fe (II) ions cheaters, as compared to CHA prepared from 1- methylpiperidone (2a-e). The histone deacetylase (HDAC) inhibitory activity, lipophilicity and acute toxicity were influenced by the length amino acids (size) (Glycine < Alanine < Valine < Leucine < Phenylalanine). All compounds bearing spiro-N-methylpiperidine ring (2a-e) are non-toxic up to 1250 mg/kg dose, while compounds bearing spiro-tetramethylpiperidine ring (1a-e) exhibit moderate toxicity which increases with increasing lipophility, but not excite at 400 mg/kg. Conclusion: It was shown that the use of combination of non-toxic doses of cisplatin (cPt) or cyclophosphamide with CHA in most cases result in the appearance of a considerable anti-tumor effect of cytostatics. The highest chemosensitizing activity with respect to leukemia Р388 is demonstrated by the CHA derivatives of Valine 1c or 2c.


Blood ◽  
1990 ◽  
Vol 76 (6) ◽  
pp. 1250-1255 ◽  
Author(s):  
S Whitehead ◽  
TE Peto

Abstract Deferoxamine (DF) has antimalarial activity that can be demonstrated in vitro and in vivo. This study is designed to examine the speed of onset and stage dependency of growth inhibition by DF and to determine whether its antimalarial activity is cytostatic or cytocidal. Growth inhibition was assessed by suppression of hypoxanthine incorporation and differences in morphologic appearance between treated and control parasites. Using synchronized in vitro cultures of Plasmodium falciparum, growth inhibition by DF was detected within a single parasite cycle. Ring and nonpigmented trophozoite stages were sensitive to the inhibitory effect of DF but cytostatic antimalarial activity was suggested by evidence of parasite recovery in later cycles. However, profound growth inhibition, with no evidence of subsequent recovery, occurred when pigmented trophozoites and early schizonts were exposed to DF. At this stage in parasite development, the activity of DF was cytocidal and furthermore, the critical period of exposure may be as short as 6 hours. These observations suggest that iron chelators may have a role in the treatment of clinical malaria.


Sign in / Sign up

Export Citation Format

Share Document