THYROID PROTEINS AND HORMONE SYNTHESIS IN HUMAN THYROID CANCER

1974 ◽  
Vol 76 (3) ◽  
pp. 651-669 ◽  
Author(s):  
Colette Thomas-Morvan ◽  
Berthe Nataf ◽  
Maurice Tubiana

ABSTRACT Thyroid iodoproteins and hormone synthesis have been studied in vivo and in organ culture in 44 cases of thyroid cancer. In a few cases, Tg1) (17–19 S) is virtually absent; a portion of the light fractions (3–8 S), which seems to represent some precursors of Tg, incorporated in culture the 14C-amino acids. In most of the cases, the solubility profiles, sedimentation patterns as well as electrophoretic migration of proteins were normal. The content of Tg and the concentration of stable iodine (127I) in Tg are less than that of "normal" tissues, and the deficiency in iodination appears to be more pronounced than the depression of the Tg synthesis. Most frequently the radioiodine uptake is very low and most of the iodine remains in the gland as iodide and MIT. In those tissues which organify radioiodine, it is incorporated into tyrosine molecules and is metabolized to the stage of iodothyronines (T4 + T3); there must then be little or no defect in coupling reactions. There is a linear relation between the concentration of stable iodine in Tg and the level of hormone synthesis, as we have found in "normal" gland and benign thyroid diseases. These results suggest that the overall disorder seen in thyroid cancer tissues appears to involve one of the initial steps of hormone synthesis. The very low mean iodination of Tg in these tissues suggests a great heterogeneity in the functional activity throughout the tumour. TSH has a very variable effect on thyroid cancer tissues maintained in organ culture: in 46 % of the cases the hormone has no effect. In some instances TSH may significantly increase the incorporation of radioiodine into soluble iodoproteins, Tg as well as the albumin fraction.

1989 ◽  
Vol 121 (1) ◽  
pp. 112-120 ◽  
Author(s):  
Tohru Yashiro ◽  
Yoshito Ohba ◽  
Hitomi Murakami ◽  
Takao Obara ◽  
Toshio Tsushima ◽  
...  

Abstract. The presence of IGF-I receptors was demonstrated in normal and neoplastic tissues of human thyroid. Binding of [125I]IGF-I to thyroid membranes was dependent on time and temperature of incubation, and maximal binding was achieved at 4°C and 18 h of incubation. [125I] IGF-I binding was dose-dependently displaced by unlabelled IGF-I; half-maximal inhibition occurred at concentrations of 10–20 μg/l. IGF-II and insulin had relative potencies of 5 and 1% compared with IGF-I. Scatchard analysis of binding data revealed a single class of IGF-I receptors with high affinity (Ka: 1.2–8.6 × 109 1/mol) in normal thyroid tissues. Affinity cross-linking and autoradiography demonstrated the type I IGF receptors. Specific binding of [125I] IGF-I in thyroid cancer tissues (9.69 ± 2.07% per 200 μg protein; mean ± sem, N = 8) was significantly (p <0.05) higher than that in the surrounding normal tissues (3.03 ± 0.35%, N = 8). In contrast, there was no difference in the binding between adenoma tissues (4.19 ± 0.53%, N = 5) and the adjacent normal tissues (2.94 ± 0.24%, N = 5). The higher IGF-I binding in cancer tissues was due to an increase in the binding capacity without any change in the affinity. The presence of IGF-I receptors suggests a possible role of IGF-I and its receptors in the growth of thyroid cancer cells.


2007 ◽  
Vol 14 (3) ◽  
pp. 827-837 ◽  
Author(s):  
Salvatore Ulisse ◽  
Enke Baldini ◽  
Matteo Toller ◽  
Jean-Guy Delcros ◽  
Aurélie Guého ◽  
...  

Aurora-A kinase has recently been shown to be deregulated in thyroid cancer cells and tissues. Among the Aurora-A substrates identified, transforming acidic coiled-coil (TACC3), a member of the TACC family, plays an important role in cell cycle progression and alterations of its expression occur in different cancer tissues. In this study, we demonstrated the expression of the TACC3 gene in normal human thyroid cells (HTU5), and its modulation at both mRNA and protein levels during cell cycle. Its expression was found, with respect to HTU5 cells, unchanged in cells derived from a benign thyroid follicular tumor (HTU42), and significantly reduced in cell lines derived from follicular (FTC-133), papillary (B-CPAP), and anaplastic thyroid carcinomas (CAL-62 and 8305C). Moreover, in 16 differentiated thyroid cancer tissues, TACC3 mRNA levels were found, with respect to normal matched tissues, reduced by twofold in 56% of cases and increased by twofold in 44% of cases. In the same tissues, a correlation between the expression of the TACC3 and Aurora-A mRNAs was observed. TACC3 and Aurora-A interact in vivo in thyroid cells and both proteins localized onto the mitotic structure of thyroid cells. Finally, TACC3 localization on spindle microtubule was no more observed following the inhibition of Aurora kinase activity by VX-680. We propose that Aurora-A and TACC3 interaction is important to control the mitotic spindle organization required for proper chromosome segregation.


Author(s):  
Taipengfei Shu ◽  
Lin Yang ◽  
Lijie Sun ◽  
Jixuan Lu ◽  
Xiaorong Zhan

Objective:Thyroid cancer is a common type of endocrine malignancy, and its incidence has been steadily increasing in many regions of the world. Numerous studies have found that the circRNAs in various cancer types are aberrantly expressed, which could be potential biological diagnostic markers and therapeutic targets. The purpose of this study was to investigate the role of circHIPK3 in the development and progression of thyroid cancer and its mechanism. Subject and Methods:qRT-PCR was used to detect the relative expression levels of circHIPK3 in thyroid cancer cell lines (K1, CAL-62, TPC1), human thyroid normal cells (Nthy-ori 3-1), 10 pairs of thyroid cancer tissues and corresponding adjacent normal tissues. CCK-8 and Transwell assays were used to detect the proliferation and metastasis ability of cells. The targeted relationships between circHIPK3-miR-338-3p and miR-338-3p-RAB23 were predicted by bioinformatics analysis and verified by dual-luciferase reporter assays. Results and Conclusion: The downregulation of circHIPK3 significantly reduced the migration, invasion and proliferation of thyroid carcinoma. Then, we demonstrated that circHIPK3 up-regulated the expression of its target gene RAB23 by sponging miR-338-3p to promote the tumorigenesis and invasiveness of thyroid cancer. This study is the first to find that circHIPK3 plays the role of oncogenetic circRNA in thyroid cancer, which may provide new insights into how circRNA affects the progression of thyroid cancer. Our study also showed that circHIPK3 could be a novel biomarker for thyroid cancer.


Author(s):  
Dumitru A Iacobas

Publically available (own) transcriptomic data were re-analyzed to quantify the alteration of functional pathways in the thyroid cancer, establish the gene hierarchy, identify potential gene targets and predict the effects of their manipulation. The expression data were generated from one case of papillary thyroid carcinoma (PTC) and from genetically manipulated BCPAP (papillary) and 8505C (anaplastic) human thyroid cancer cell lines. The study used the genomic fabric perspective that considers the transcriptome as a multi-dimensional mathematical object based on the three independent characteristics that can be derived for each gene from the expression data. We found remarkable remodeling of the thyroid hormone synthesis, cell cycle, oxidative phosphorylation and apoptosis pathways. Serine peptidase inhibitor, Kunitz type, 2 (SPINT2) was identified as the Gene Master Regulator of the investigated PTC. The substantial increase of the expression synergism of SPINT2 with apoptosis genes in the cancer nodule with respect to the surrounding normal tissue (NOR) suggests that its experimental overexpression may force the PTC cells into apoptosis with negligible effect on the NOR cells. The predictive value of the expression coordination for the expression regulation was validated with data from 8505C and BCPAP cells before and after lentiviral transfection with DDX19B.


2008 ◽  
Vol 198 (2) ◽  
pp. 301-307 ◽  
Author(s):  
Ling Jin ◽  
Vanessa Chico-Galdo ◽  
Claude Massart ◽  
Christine Gervy ◽  
Viviane De Maertelaere ◽  
...  

Chronic administration of acrylamide has been shown to induce thyroid tumors in rat. In vitro acrylamide also causes DNA damage, as demonstrated by the comet assay, in various types of cells including human thyroid cells and lymphocytes, as well as rat thyroid cell lines. In this work, mice were administered acrylamide in their drinking water in doses comparable with those used in rats, i.e., around 3–4 mg/kg per day for mice treated 2, 6, and 8 months. Some of the mice were also treated with thyroxine (T4) to depress the activity of the thyroid. Others were treated with methimazole that inhibits thyroid hormone synthesis and consequently secretion and thus induces TSH secretion and thyroid activation. These moderate treatments were shown to have their known effect on the thyroid (e.g. thyroid hormone and thyrotropin serum levels, thyroid gland morphology…). Besides, T4 induced an important polydipsia and degenerative hypertrophy of adrenal medulla. Acrylamide exerted various discrete effects and at high doses caused peripheral neuropathy, as demonstrated by hind-leg paralysis. However, it did not induce thyroid tumorigenesis. These results show that the thyroid tumorigenic effects of acrylamide are not observed in another rodent species, the mouse, and suggest the necessity of an epidemiological study in human to conclude on a public health policy.


2005 ◽  
Vol 90 (10) ◽  
pp. 5692-5697 ◽  
Author(s):  
Rocco Bruno ◽  
Elisabetta Ferretti ◽  
Emanuele Tosi ◽  
Franco Arturi ◽  
Paolo Giannasio ◽  
...  

Context: Evidence from in vitro studies or animal models has shown that TSH affects thyrocytes by thyroid-specific expression modulation. Objective: The objective of our study was to analyze the role of TSH in human thyroid gene expression in vivo. Design/Setting: Thirty-nine normal thyroid tissues were collected at the same center. Study Subjects: Patients were divided into two groups based on serum TSH levels: 17 with normal TSH levels (1–4 mU/liter; group 1) and 22 with TSH levels below 0.5 mU/liter (group 2). Intervention: Group 2 underwent thyroidectomy after suppressive l-T4 therapy. Main Outcome Measures: mRNA levels of thyroid genes such as sodium/iodide symporter (NIS), apical iodide transporter, pendrin, thyroglobulin, thyroperoxidase, TSH receptor, paired box transcription factor 8, and thyroid transcription factor-1 were evaluated by quantitative PCR. Results: The reduction of TSH stimulation causes decreases in NIS and apical iodide transporter gene expression in normal tissues and more limited reductions in thyroglobulin, thyroperoxidase, and paired box transcription factor 8, but it has no significant effect on TSH receptor, pendrin, or thyroid transcription factor-1. Comparison of NIS levels in normal and nodular tissues from the same patient confirmed that it is differentially expressed in nodules only in the presence of normal TSH (P &lt; 0.01). In patients with suppressed TSH, nodular NIS levels were similar to those in normal tissues. Conclusions: Our data represent the first demonstration in human thyroid tissues that TSH contributes to the regulation of thyrocyte differentiation by modulating thyroid gene levels. It exerts a particularly important effect on the transcription of NIS, which becomes very low after prolonged TSH suppression.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
ZhongQian Hu ◽  
Bin Yang ◽  
Tiankuan Li ◽  
Jia Li

Background. Contrast-enhanced ultrasound imaging has been widely used in the ultrasound diagnosis of a variety of tumours with high diagnostic accuracy, especially in patients with hepatic carcinoma, while its application is rarely reported in thyroid cancer. The currently used ultrasound contrast agents, microbubbles, cannot be targeted to molecular markers expressed in tumour cells due to their big size, leading to a big challenge for ultrasound molecular imaging. Phase-changeable perfluorocarbon nanoparticles may resolve the penetrability limitation of microbubbles and serve as a promising probe for ultrasound molecular imaging. Methods. 65 thyroid tumour samples and 40 normal samples adjacent to thyroid cancers were determined for SHP2 expression by IHC. SHP2-targeted PLGA nanoparticles (NPs-SHP2) encapsulating perfluoropentane (PFP) were prepared with PLGA-PEG as a shell material, and their specific target-binding ability was assessed in vitro and in vivo, and the effect on the enhancement of ultrasonic imaging induced by LIFU was studied in vivo. Results. In the present study, we verified that tumour overexpression of SHP2 and other protein tyrosine phosphatases regulated several cellular processes and contributed to tumorigenesis, which could be introduced to ultrasound molecular imaging for differentiating normal from malignant thyroid diagnostic nodes. The IHC test showed remarkably high expression of SHP2 in human thyroid carcinoma specimens. In thyroid tumour xenografts in mice, the imaging signal was significantly enhanced by SHP2-targeted nanoparticles after LIFU induction. Conclusion. This study provides a basis for preclinical exploration of ultrasound molecular imaging with NPs-SHP2 for clinical thyroid nodule detection to enhance diagnostic accuracy.


Author(s):  
Yue Ma ◽  
Lingling Wang ◽  
Haixia Li ◽  
Wen Cheng ◽  
Xiulan Zheng ◽  
...  

Abstract Chemotherapeutic efficacy plays a significant role in the development of nanotheranostic systems for drug delivery in tumor cells. In this study, we demonstrate the self-assembly of C225 conjugate, Perfluorohexane/Gold Nanoparticles (Au-PFH-NPs), which results in low-intensity focused ultrasound diagnosis ablation of thyroid cancer treatment. Cetuximab-Conjugated Perfluorohexane/Gold Nanoparticles (C-Au-PFH-NPs) showed excellent stability in water, PBS, and 20% rat serum. Transmission electron microscopy images revealed the effective construction of C-Au-PFH-NPs with commonly spherical assemblies. The incubation of C625 thyroid carcinoma with C-Au-PFH-NPs triggered apoptosis, which was confirmed by flow cytometry analysis. The C-Au-PFH-NPs showed remarkable antitumor efficacy in human thyroid carcinoma xenografts. The histopathological results additionally confirm the achieved outcomes. Furthermore, we successfully examined the efficiency of C-Au-PFH-NPs when using the thyroid carcinoma low-intensity focused ultrasound (LIFUS) diagnostic imaging in vivo. These findings are clear for LIFUS agents with high performing images. It is also identified that different therapeutic purposes will have extensive potential for future biomedical purposes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jooran Lee ◽  
Byungyeon Kim ◽  
Byungjun Park ◽  
Youngjae Won ◽  
Sang-Yeob Kim ◽  
...  

AbstractA biopsy is often performed for the diagnosis of cancer during a surgical operation. In addition, pathological biopsy is required to discriminate the margin between cancer tissues and normal tissues in surgical specimens. In this study, we presented a novel method for discriminating between tumor and normal tissues using fluorescence lifetime endoscopy (FLE). We demonstrated the relationship between the fluorescence lifetime and pH in fluorescein using the proposed fluorescence lifetime measurement system. We also showed that cancer could be diagnosed based on this relationship by assessing differences in pH based fluorescence lifetime between cancer and normal tissues using two different types of tumor such as breast tumors (MDA-MB-361) and skin tumors (A375), where cancer tissues have ranged in pH from 4.5 to 7.0 and normal tissues have ranged in pH from 7.0 to 7.4. To support this approach, we performed hematoxylin and eosin (H&E) staining test of normal and cancer tissues within a certain area. From these results, we showed the ability to diagnose a cancer using FLE technique, which were consistent with the diagnosis of a cancer with H&E staining test. In summary, the proposed pH-based FLE technique could provide a real time, in vivo, and in-situ clinical diagnostic method for the cancer surgical and could be presented as an alternative to biopsy procedures.


2014 ◽  
Vol 21 (6) ◽  
pp. 865-877 ◽  
Author(s):  
Samantha K McCarty ◽  
Motoyasu Saji ◽  
Xiaoli Zhang ◽  
Christina M Knippler ◽  
Lawrence S Kirschner ◽  
...  

Increased p21-activated kinase (PAK) signaling and expression have been identified in the invasive fronts of aggressive papillary thyroid cancers (PTCs), including those withRET/PTC, BRAFV600E, and mutantRASexpression. Functionally, thyroid cancer cell motilityin vitrois dependent on group 1 PAKs, particularly PAK1. In this study, we hypothesize that BRAF, a central kinase in PTC tumorigenesis and invasion, regulates thyroid cancer cell motility in part through PAK activation. Using three well-characterized human thyroid cancer cell lines, we demonstrated in all cell lines thatBRAFknockdown reduced PAK phosphorylation of direct downstream targets. In contrast, inhibition of MEK activity either pharmacologically or with siRNA did not reduce PAK activity, indicating MEK is dispensable for PAK activity. Inhibition of cell migration through BRAF loss is rescued by overexpression of either constitutive active MEK1 or PAK1, demonstrating that both signaling pathways are involved in BRAF-regulated cell motility. To further characterize BRAF–PAK signaling, immunofluorescence and immunoprecipitation demonstrated that both exogenously overexpressed and endogenous PAK1 and BRAF co-localize and physically interact, and that this interaction was enhanced in mitosis. Finally, we demonstrated that acute induction of BRAFV600E expressionin vivoin murine thyroid glands results in increased PAK expression and activity confirming a positive signaling relationshipin vivo. In conclusion, we have identified a signaling pathway in thyroid cancer cells which BRAF activates and physically interacts with PAK and regulates cell motility.


Sign in / Sign up

Export Citation Format

Share Document