Progesterone and estrogen regulation of gene expression related to acylation stimulating protein production and function in ex vivo adipose tissue explant culture

2016 ◽  
Author(s):  
Riyami Bashair Al ◽  
Simon Langley-Evans ◽  
Andrew Salter ◽  
Jumana Saleh
BMC Genomics ◽  
2010 ◽  
Vol 11 (1) ◽  
pp. 446 ◽  
Author(s):  
De Li ◽  
Yinxin Zhang ◽  
Li Xu ◽  
Linkang Zhou ◽  
Yue Wang ◽  
...  

1997 ◽  
Vol 273 (2) ◽  
pp. R762-R767 ◽  
Author(s):  
A. Chaudhry ◽  
J. G. Granneman

Brown adipose tissue (BAT) expresses several adenylyl cyclase (AC) subtypes, and adrenergic stimulation selectively upregulates AC-III gene expression. Previous studies have described synergistic interactions between the sympathetic nervous system (SNS) and 3,5,3'-triiodothyronine (T3) on the regulation of gene expression in BAT. Because adrenergic stimulation also increases the activity of BAT type II thyroxine 5'-deiodinase (DII) and local T3 generation is important for many functional responses in BAT, we examined the effects of thyroid hormone status on the expression of various AC subtypes. Hypothyroidism selectively increased AC-III mRNA levels in BAT but not in white adipose tissue. Of the other subtypes examined, hypothyroidism did not alter AC-VI mRNA levels and slightly reduced AC-IX mRNA levels in BAT. The increase in AC-III expression was paralleled by an increase in forskolin-stimulated AC activity in BAT membranes. Sympathetic denervation of BAT abolished the increase in both AC activity and AC-III mRNA expression produced by hypothyroidism, but did not affect the expression of other subtypes. Surgical denervation also prevented the induction of AC-III in the cold-stressed euthyroid rat, but injections of T3 failed to alter AC-III expression in intact or denervated BAT. Our results indicate that T3 does not directly affect expression of AC-III. Rather, hypothyroidism increases BAT AC-III expression indirectly via an increase in sympathetic stimulation. Furthermore, our results strongly indicate that the increase in AC activity in hypothyroid BAT is due to increased expression of AC-III.


2019 ◽  
Vol 28 (16) ◽  
pp. 2763-2774 ◽  
Author(s):  
Nicola Jeffery ◽  
Sarah Richardson ◽  
David Chambers ◽  
Noel G Morgan ◽  
Lorna W Harries

Abstract Changes to islet cell identity in response to type 2 diabetes (T2D) have been reported in rodent models, but are less well characterized in humans. We assessed the effects of aspects of the diabetic microenvironment on hormone staining, total gene expression, splicing regulation and the alternative splicing patterns of key genes in EndoC-βH1 human beta cells. Genes encoding islet hormones [somatostatin (SST), insulin (INS), Glucagon (GCG)], differentiation markers [Forkhead box O1 (FOXO1), Paired box 6, SRY box 9, NK6 Homeobox 1, NK6 Homeobox 2] and cell stress markers (DNA damage inducible transcript 3, FOXO1) were dysregulated in stressed EndoC-βH1 cells, as were some serine arginine rich splicing factor splicing activator and heterogeneous ribonucleoprotein particle inhibitor genes. Whole transcriptome analysis of primary T2D islets and matched controls demonstrated dysregulated splicing for ~25% of splicing events, of which genes themselves involved in messenger ribonucleic acid processing and regulation of gene expression comprised the largest group. Approximately 5% of EndoC-βH1 cells exposed to these factors gained SST positivity in vitro. An increased area of SST staining was also observed ex vivo in pancreas sections recovered at autopsy from donors with type 1 diabetes (T1D) or T2D (9.3% for T1D and 3% for T2D, respectively compared with 1% in controls). Removal of the stressful stimulus or treatment with the AKT Serine/Threonine kinase inhibitor SH-6 restored splicing factor expression and reversed both hormone staining effects and patterns of gene expression. This suggests that reversible changes in hormone expression may occur during exposure to diabetomimetic cellular stressors, which may be mediated by changes in splicing regulation.


2018 ◽  
Vol 20 (1) ◽  
pp. 102 ◽  
Author(s):  
Justine Habibian ◽  
Bradley Ferguson

Approximately five million United States (U.S.) adults are diagnosed with heart failure (HF), with eight million U.S. adults projected to suffer from HF by 2030. With five-year mortality rates following HF diagnosis approximating 50%, novel therapeutic treatments are needed for HF patients. Pre-clinical animal models of HF have highlighted histone deacetylase (HDAC) inhibitors as efficacious therapeutics that can stop and potentially reverse cardiac remodeling and dysfunction linked with HF development. HDACs remove acetyl groups from nucleosomal histones, altering DNA-histone protein electrostatic interactions in the regulation of gene expression. However, HDACs also remove acetyl groups from non-histone proteins in various tissues. Changes in histone and non-histone protein acetylation plays a key role in protein structure and function that can alter other post translational modifications (PTMs), including protein phosphorylation. Protein phosphorylation is a well described PTM that is important for cardiac signal transduction, protein activity and gene expression, yet the functional role for acetylation-phosphorylation cross-talk in the myocardium remains less clear. This review will focus on the regulation and function for acetylation-phosphorylation cross-talk in the heart, with a focus on the role for HDACs and HDAC inhibitors as regulators of acetyl-phosphorylation cross-talk in the control of cardiac function.


2013 ◽  
Vol 219 (2) ◽  
pp. 101-108 ◽  
Author(s):  
Bee K Tan ◽  
Jing Chen ◽  
Raghu Adya ◽  
Manjunath Ramanjaneya ◽  
Vanlata Patel ◽  
...  

Adipolin is a novel adipokine with anti-inflammatory and glucose-lowering properties. Lower levels of adipolin are found in obese and diabetic mice. Polycystic ovary syndrome (PCOS) is a pro-inflammatory state associated with obesity and diabetes. To date, there are no human studies on adipolin. Therefore, we measured serum (ELISA) and adipose tissue adipolin mRNA expression (RT-PCR) and protein concentrations (western blotting) in PCOS and control subjects. We also investigated the ex vivo effect of glucose and metformin on adipolin protein production in human subcutaneous adipose tissue explants. We report novel data that serum and subcutaneous adipose tissue adipolin mRNA expression and protein concentrations were significantly lower in women with PCOS compared with control subjects. Furthermore, Spearman's rank analysis showed that serum adipolin concentrations were significantly negatively correlated with BMI, waist-to-hip ratio, and glucose (P<0.05). However, when subjected to multiple regression analysis, none of these variables were predictive of serum adipolin concentrations (P>0.05). Also, subcutaneous adipose tissue adipolin mRNA expression and protein concentrations were only significantly negatively correlated with glucose (P<0.05). No significant correlations were found with omental adipose tissue adipolin mRNA expression and protein concentrations (P>0.05). Moreover, glucose profoundly reduced and metformin significantly increased adipolin protein production in human adipose tissue explants respectively. Importantly, metformin's effects appear to be via the AMP-activated protein kinase signaling pathway.


2007 ◽  
Vol 92 (7) ◽  
pp. 2688-2695 ◽  
Author(s):  
Giuseppe Murdolo ◽  
Ann Hammarstedt ◽  
Madeléne Sandqvist ◽  
Martin Schmelz ◽  
Christian Herder ◽  
...  

Abstract Context: The chemokine monocyte chemoattractant protein-1 (MCP-1) is implicated in obesity-associated chronic inflammation, insulin resistance, and atherosclerosis. Objectives: The objectives of this study were to: 1) characterize the interstitial levels and the gene expression of MCP-1 in the sc abdominal adipose tissue (SCAAT), 2) elucidate the response of MCP-1 to acute hyperinsulinemia, and 3) determine the relationship between MCP-1 and arterial stiffness. Design: Nine lean (L) and nine uncomplicated obese (OB) males were studied in the fasting state and during a euglycemic-hyperinsulinemic clamp combined with the microdialysis technique. Interstitial and serum MCP-1 (iMCP-1 and sMCP-1, respectively) levels, pulse wave analysis, and SCAAT biopsies were characterized at baseline and after hyperinsulinemia. Results: OB showed elevated sMCP-1 (P &lt; 0.01) but similar iMCP-1 levels as compared with L. Basal iMCP-1 concentrations were considerably higher than sMCP-1 (P &lt; 0.0001), and a gradient between iMCP-1 and sMCP-1 levels was maintained throughout the hyperinsulinemia. At baseline, SCAAT gene expression profile revealed a “co-upregulation” of MCP-1, MCP-2, macrophage inflammatory protein-1α, and CD68 in OB, and whole-body glucose disposal inversely correlated with the MCP-1 gene expression. After hyperinsulinemia, MCP-1 and MCP-2 mRNA levels significantly increased in L, but not in OB. Finally, sMCP-1 excess in the OB positively correlated with the stiffer vasculature. Conclusions: These observations demonstrate similar interstitial concentrations and a differential gene response to hyperinsulinemia of MCP-1 in the SCAAT from L and OB individuals. In human obesity, we suggest the SCAAT MCP-1 gene overexpression as a biomarker of an “inflamed” adipose organ and impaired glucose metabolism.


2010 ◽  
Vol 42A (2) ◽  
pp. 141-152 ◽  
Author(s):  
Siddharth Sukumaran ◽  
Bai Xue ◽  
William J. Jusko ◽  
Debra C. DuBois ◽  
Richard R. Almon

Circadian rhythms occur in all levels of organization from expression of genes to complex physiological processes. Although much is known about the mechanism of the central clock in the suprachiasmatic nucleus, the regulation of clocks present in peripheral tissues as well as the genes regulated by those clocks is still unclear. In this study, the circadian regulation of gene expression was examined in rat adipose tissue. A rich time series involving 54 animals euthanized at 18 time points within the 24-h cycle (12:12 h light-dark) was performed. mRNA expression was examined with Affymetrix gene array chips and quantitative real-time PCR, along with selected physiological measurements. Transcription factors involved in the regulation of central rhythms were examined, and 13 showed circadian oscillations. Mining of microarray data identified 190 probe sets that showed robust circadian oscillations. Circadian regulated probe sets were further parsed into seven distinct temporal clusters, with >70% of the genes showing maximum expression during the active/dark period. These genes were grouped into eight functional categories, which were examined within the context of their temporal expression. Circadian oscillations were also observed in plasma leptin, corticosterone, insulin, glucose, triglycerides, free fatty acids, and LDL cholesterol. Circadian oscillation in these physiological measurements along with the functional categorization of these genes suggests an important role for circadian rhythms in controlling various functions in white adipose tissue including adipogenesis, energy metabolism, and immune regulation.


Sign in / Sign up

Export Citation Format

Share Document