scholarly journals CUX1: a modulator of tumour aggressiveness in pancreatic neuroendocrine neoplasms

2014 ◽  
Vol 21 (6) ◽  
pp. 879-890 ◽  
Author(s):  
Sebastian Krug ◽  
Benjamin Kühnemuth ◽  
Heidi Griesmann ◽  
Albrecht Neesse ◽  
Leonie Mühlberg ◽  
...  

Pancreatic neuroendocrine neoplasms (PNENs) constitute a rare tumour entity, and prognosis and treatment options depend on tumour-mediating hallmarks such as angiogenesis, proliferation rate and resistance to apoptosis. The molecular pathways that determine the malignant phenotype are still insufficiently understood and this has limited the use of effective combination therapies in the past. In this study, we aimed to characterise the effect of the oncogenic transcription factor Cut homeobox 1 (CUX1) on proliferation, resistance to apoptosis and angiogenesis in murine and human PNENs. The expression and function ofCUX1were analysed using knockdown and overexpression strategies in Ins-1 and Bon-1 cells, xenograft models and a genetically engineered mouse model of insulinoma (RIP1Tag2). Regulation of angiogenesis was assessed using RNA profiling and functional tube-formation assays in HMEC-1 cells. Finally,CUX1expression was assessed in a tissue microarray of 59 human insulinomas and correlated with clinicopathological data.CUX1expression was upregulated during tumour progression in a time- and stage-dependent manner in the RIP1Tag2 model, and associated with pro-invasive and metastatic features of human insulinomas. Endogenous and recombinantCUX1expression increased tumour cell proliferation, tumour growth, resistance to apoptosis, and angiogenesisin vitroandin vivo. Mechanistically, the pro-angiogenic effect ofCUX1was mediated via upregulation of effectors such as HIF1α and MMP9.CUX1mediates an invasive pro-angiogenic phenotype and is associated with malignant behaviour in human insulinomas.

PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0241448
Author(s):  
Lisa Annabel Weber ◽  
Anne Funtan ◽  
Reinhard Paschke ◽  
Julien Delarocque ◽  
Jutta Kalbitz ◽  
...  

Equine sarcoid (ES) is the most prevalent skin tumor in equids worldwide. Additionally, aging grey horses frequently suffer from equine malignant melanoma (EMM). Current local therapies targeting these skin tumors remain challenging. Therefore, more feasible topical treatment options should be considered. In order to develop a topical therapy against ES and EMM, betulinyl-bis-sulfamate and NVX-207, derivatives of the naturally occurring betulin and betulinic acid, respectively, were evaluated for their antiproliferative (crystal violet staining assay), cytotoxic (MTS assay) and apoptotic (AnnexinV staining, cell cycle investigations) effects on primary ES cells, EMM cells and equine dermal fibroblasts in vitro. The more potent derivative was assessed for its in vitro penetration and permeation on isolated equine skin within 30 min and 24 h using Franz-type diffusion cells and HPLC analysis. Betulinyl-bis-sulfamate and NVX-207 inhibited the proliferation and metabolism in ES cells, EMM cells and fibroblasts significantly (p < 0.001) in a time- and dose-dependent manner. NVX-207 had superior anticancer effects compared to betulinyl-bis-sulfamate. Both compounds led to the externalization of phosphatidylserines on the cell membrane and DNA fragmentation, demonstrating that the effective mode of action was apoptosis. After 48 h of treatment with NVX-207, the number of necrotic cells was less than 2% in all cell types. Detected amounts of NVX-207 in the different skin layers exceeded the half-maximal inhibitory concentrations calculated by far. Even though data obtained in vitro are auspicious, the results are not unconditionally applicable to the clinical situation. Consequently, in vivo studies are required to address the antitumoral effects of topically applied NVX-207 in ES and EMM patients.


2021 ◽  
Author(s):  
Rachana Patel ◽  
Lisa Rodgers ◽  
Catriona A. Ford ◽  
Linda K Rushworth ◽  
Janis Fleming ◽  
...  

ABSTRACTProstate cancer is highly prevalent, being the second most common cause of cancer mortality in men worldwide. Applying a novel genetically engineered mouse model (GEMM) of aggressive prostate cancer driven by deficiency of PTEN and SPRY2 (Sprouty 2) tumour suppressors, we identified enhanced creatine metabolism within the phosphagen system in progressive disease. Altered creatine metabolism was validated in in vitro and in vivo prostate cancer models and in clinical cases. Upregulated creatine levels were due to increased uptake through the SLC6A8 creatine transporter and de novo synthesis, resulting in enhanced cellular basal respiration. Treatment with cyclocreatine (a creatine analogue that potently and specifically blocks the phosphagen system) dramatically reduces creatine and phosphocreatine levels. Blockade of creatine biosynthesis by cyclocreatine leads to cellular accumulation of S-adenosyl methionine (SAM), an intermediary of creatine biosynthesis, and suppresses prostate cancer growth in vitro. Furthermore, cyclocreatine treatment impairs cancer progression in our GEMM and in a xenograft liver metastasis model. Hence, by targeting the phosphagen system, cyclocreatine results in anti-tumourigenic effects from both SAM accumulation and suppressed phosphagen system.


Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 5014
Author(s):  
Simon Leonhard April-Monn ◽  
Valentina Andreasi ◽  
Marco Schiavo Lena ◽  
Martin Carl Sadowski ◽  
Corina Kim-Fuchs ◽  
...  

Pancreatic neuroendocrine neoplasms are epigenetically driven tumors, but therapies against underlying epigenetic drivers are currently not available in the clinical practice. We aimed to investigate EZH2 (Enhancer of Zest homolog) expression in PanNEN and the impact of EZH2 inhibition in three different PanNEN preclinical models. EZH2 expression in PanNEN patient samples (n = 172) was assessed by immunohistochemistry and correlated with clinico-pathological data. Viability of PanNEN cell lines treated with EZH2 inhibitor (GSK126) was determined in vitro. Lentiviral transduction of shRNA targeting EZH2 was performed in QGP1 cells, and cell proliferation was measured. Rip1TAG2 mice underwent GSK126 treatment for three weeks starting from week 10 of age. Primary cells isolated from PanNEN patients (n = 6) were cultivated in 3D as islet-like tumoroids and monitored for 10 consecutive days upon GSK126 treatment. Viability was measured continuously for the whole duration of the treatment. We found that high EZH2 expression correlated with higher tumor grade (p < 0.001), presence of distant metastases (p < 0.001), and shorter disease-free survival (p < 0.001) in PanNEN patients. Inhibition of EZH2 in vitro in PanNEN cell lines and in patient-derived islet-like tumoroids reduced cell viability and impaired cell proliferation, while inhibition of EZH2 in vivo in Rip1TAG2 mice reduced tumor burden. Our results show that EZH2 is highly expressed in high-grade PanNENs, and during disease progression it may contribute to aberrations in the epigenetic cellular landscape. Targeting EZH2 may represent a valuable epigenetic treatment option for patients with PanNEN.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1593-1593
Author(s):  
Seth Welsh ◽  
Daniel Riggs ◽  
Erin Meermeier ◽  
Chang-Xin Shi ◽  
Victoria Garbitt ◽  
...  

Abstract Multiple myeloma (MM) is an incurable form of plasma cell cancer in which primary and secondary chromosomal translocations routinely juxtapose oncogenes to plasma cell-specific super-enhancers. Coincidentally, drugs which target super-enhancers have had success clinically. For example, immunomodulatory imide drugs (IMiDs) degrade super-enhancer-binding pioneer factors IKAROS and AIOLOS, while glucocorticoids (Dexamethasone) and proteasome inhibitors (Bortezomib) have the ability to transrepress or block the processing of super-enhancer-forming NF-κB proteins, respectively. Currently, alternative enhancer-targeting drugs are also in clinical development, like p300 inhibitors which target the acetyl-binding bromodomains and/or histone acetyl transferase activity of the chromatin-regulating coactivator homologs CBP and EP300. Despite showing therapeutic promise, our understanding of how these drugs function, alone or together, remains incomplete. Case in point, we find that IMiD-induced degradation of its target proteins IKAROS and AIOLOS does not guarantee a therapeutic response in vitro, and patients successfully treated with IMiDs eventually relapse; meanwhile, coactivator-targeting therapies like p300 inhibitors are often too toxic in vivo, and lack a therapeutic window. To improve the outcomes of MM patients we need to understand the heterogeneous genetics and transcription-factor milieus of the myeloma enhancer landscape, as well as how to increase the precision of enhancer-disrupting drugs. To accomplish this, our lab utilizes more than 60 human myeloma cell lines that have been extensively characterized at the genetic, proteomic, and drug-therapeutic-response levels. Additionally, we have generated a highly-predictive immunocompetent mouse model (Vk*MYC hCRBN+) that develops human-like MM and is sensitive to both IMiDs and a new class of therapeutics termed "degronimids" (normal mice do not respond to IMiDs or degronimids). Our central hypothesis is that combining a broad coactivator-targeting drug (e.g., the p300 inhibitor GNE-781), with a MM-specific transcription factor-targeting drug (e.g., IMiDs) restricts toxicities to myeloma cells and thus improves the therapeutic window. Currently, we are testing a variety of coactivator-targeting compounds alongside traditional IMiD therapies and other preclinical transcription factor-targeting drugs both in vivo and in vitro. We show that Vk*MYC hCRBN+ mice are exquisitely sensitive to GNE-781, requiring one fourth of the dose needed to treat other cancers and therefore avoiding the neutropenia and thrombocytopenia seen at higher doses. Second, we show that although IMiDs and GNE-781 induce an effective but transient response in vivo as single agents, the combination of the two drugs proved curative, with a progressive deepening of the anti-tumor response occurring even after therapy is discontinued. Ongoing experiments aim to determine how this drug combination, and other coactivator + transcription factor-targeting combinations, permanently disrupt myeloma-specific super-enhancers. Disclosures Neri: BMS: Consultancy, Honoraria; Sanofi: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Janssen: Consultancy, Honoraria. Bahlis: Sanofi: Consultancy, Honoraria; GlaxoSmithKline: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Pfizer: Consultancy, Honoraria; BMS/Celgene: Consultancy, Honoraria; Abbvie: Consultancy, Honoraria; Takeda: Consultancy, Honoraria; Janssen: Consultancy, Honoraria; Karyopharm: Consultancy, Honoraria; Genentech: Consultancy. Boise: AstraZeneca: Honoraria, Research Funding; AbbVie/Genentech: Membership on an entity's Board of Directors or advisory committees. Chesi: Abcuro: Patents & Royalties: Genetically engineered mouse model of myeloma; Pi Therapeutics: Patents & Royalties: Genetically engineered mouse model of myeloma; Pfizer: Consultancy; Novartis: Consultancy, Patents & Royalties: human CRBN transgenic mouse; Palleon Pharmaceuticals: Patents & Royalties: Genetically engineered mouse model of myeloma.


2020 ◽  
Vol 27 (7) ◽  
pp. 415-430
Author(s):  
Marianna Volpert ◽  
Luc Furic ◽  
Jinghua Hu ◽  
Anne E O’Connor ◽  
Richard J Rebello ◽  
...  

Identifying the factors stimulating prostate cancer cells migration and invasion has the potential to bring new therapeutic targets to the clinic. Cysteine-rich secretory protein 3 (CRISP3) is one of the most highly upregulated proteins during the transition of a healthy human prostatic epithelium to prostate cancer. Here we show using a genetically engineered mouse model of prostate cancer that CRISP3 production greatly facilitates disease progression from carcinoma in situ to invasive prostate cancer in vivo. This interpretation was confirmed using both human and mouse prostate cancer cell lines, which showed that exposure to CRISP3 enhanced cell motility and invasion. Further, using mass spectrometry, we show that CRISP3 induces changes in abundance of a subset of cell-cell adhesion proteins, including LASP1 and TJP1 both in vivo and in vitro. Collectively, these data identify CRISP3 as being pro-tumorigenic in the prostate and validate it as a potential target for therapeutic intervention.


2015 ◽  
Vol 112 (11) ◽  
pp. 3493-3498 ◽  
Author(s):  
Helen Y. Zou ◽  
Qiuhua Li ◽  
Lars D. Engstrom ◽  
Melissa West ◽  
Vicky Appleman ◽  
...  

Oncogenic c-ros oncogene1 (ROS1) fusion kinases have been identified in a variety of human cancers and are attractive targets for cancer therapy. The MET/ALK/ROS1 inhibitor crizotinib (Xalkori, PF-02341066) has demonstrated promising clinical activity in ROS1 fusion-positive non-small cell lung cancer. However, emerging clinical evidence has shown that patients can develop resistance by acquiring secondary point mutations in ROS1 kinase. In this study we characterized the ROS1 activity of PF-06463922, a novel, orally available, CNS-penetrant, ATP-competitive small-molecule inhibitor of ALK/ROS1. In vitro, PF-06463922 exhibited subnanomolar cellular potency against oncogenic ROS1 fusions and inhibited the crizotinib-refractory ROS1G2032Rmutation and the ROS1G2026Mgatekeeper mutation. Compared with crizotinib and the second-generation ALK/ROS1 inhibitors ceritinib and alectinib, PF-06463922 showed significantly improved inhibitory activity against ROS1 kinase. A crystal structure of the PF-06463922-ROS1 kinase complex revealed favorable interactions contributing to the high-affinity binding. In vivo, PF-06463922 showed marked antitumor activity in tumor models expressing FIG-ROS1, CD74-ROS1, and the CD74-ROS1G2032Rmutation. Furthermore, PF-06463922 demonstrated antitumor activity in a genetically engineered mouse model of FIG-ROS1 glioblastoma. Taken together, our results indicate that PF-06463922 has potential for treating ROS1 fusion-positive cancers, including those requiring agents with CNS-penetrating properties, as well as for overcoming crizotinib resistance driven by ROS1 mutation.


2018 ◽  
Vol 19 (11) ◽  
pp. 3287 ◽  
Author(s):  
Honglai Zhang ◽  
Rork Kuick ◽  
Sung-Soo Park ◽  
Claire Peabody ◽  
Justin Yoon ◽  
...  

The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that has a dual role in cancer, i.e., pro- or anti-tumorigenic, depending on the context. In medulloblastoma, the most frequent malignant pediatric brain tumor, several in vitro studies previously showed that AMPK suppresses tumor cell growth. The role of AMPK in this disease context remains to be tested in vivo. Here, we investigate loss of AMPKα2 in a genetically engineered mouse model of sonic hedgehog (SHH)-medulloblastoma. In contrast to previous reports, our study reveals that AMPKα2 KO impairs SHH medulloblastoma tumorigenesis. Moreover, we performed complementary molecular and genomic analyses that support the hypothesis of a pro-tumorigenic SHH/AMPK/CNBP axis in medulloblastoma. In conclusion, our observations further underline the context-dependent role of AMPK in cancer, and caution is warranted for the previously proposed hypothesis that AMPK agonists may have therapeutic benefits in medulloblastoma patients. Note: an abstract describing the project was previously submitted to the American Society for Investigative Pathology PISA 2018 conference and appears in The American Journal of Pathology (Volume 188, Issue 10, October 2018, Page 2433).


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Raymond Chang ◽  
Umberto Tosi ◽  
Julia Voronina ◽  
Oluwaseyi Adeuyan ◽  
Linda Y Wu ◽  
...  

Abstract Background Midline gliomas like diffuse intrinsic pontine glioma (DIPG) carry poor prognosis and lack effective treatment options. Studies have implicated amplifications in the phosphatidylinositol 3-kinase (PI3K) signaling pathway in tumorigenesis; compensatory activation of parallel pathways (eg, mitogen-activated protein kinase [MEK]) may underlie the resistance to PI3K inhibition observed in the clinic. Methods Three patient-derived cell lines (SU-DIPG-IV, SU-DIPG-XIII, and SF8628) and a mouse-derived brainstem glioma cell line were treated with PI3K (ZSTK474) and MEK (trametinib) inhibitors, alone or in combination. Synergy was analyzed using Chou-Talalay combination index (CI). These agents were also used alone or in combination in a subcutaneous SU-DIPG-XIII tumor model and in an intracranial genetic mouse model of DIPG, given via convection-enhanced delivery (CED). Results We found that these agents abrogate cell proliferation in a dose-dependent manner. Combination treatments were found to be synergistic (CI &lt; 1) across cell lines tested. They also showed significant tumor suppression when given systemically against a subcutaneous DIPG model (alone or in combination) or when given via direct intracranial injection (CED) in a intracranial DIPG mouse model (combination only, median survival 47 vs 35 days post-induction, P = .038). No significant short- or long-term neurotoxicity of ZSTK474 and trametinib delivered via CED was observed. Conclusions Our data indicate that ZSTK474 and trametinib combinatorial treatment inhibits malignant growth of DIPG cells in vitro and in vivo, prolonging survival. These results suggest a promising new combinatorial approach using CED for DIPG therapy, which warrants further investigation.


2019 ◽  
Vol 21 (1) ◽  
Author(s):  
Sunil Pancholi ◽  
Mariana Ferreira Leal ◽  
Ricardo Ribas ◽  
Nikiana Simigdala ◽  
Eugene Schuster ◽  
...  

Abstract Background Endocrine therapies are still the main strategy for the treatment of oestrogen receptor-positive (ER+) breast cancers (BC), but resistance remains problematic. Cross-talk between ER and PI3K/AKT/mTORC has been associated with ligand-independent transcription of ER. We have previously reported the anti-proliferative effects of the combination of everolimus (an mTORC1 inhibitor) with endocrine therapy in resistance models, but potential routes of escape via AKT signalling can lead to resistance; therefore, the use of dual mTORC1/2 inhibitors has met with significant interest. Methods To address this, we tested the effect of vistusertib, a dual mTORC1 and mTORC2 inhibitor, in a panel of endocrine-resistant and endocrine-sensitive ER+ BC cell lines, with varying PTEN, PIK3CA and ESR1 mutation status. End-points included proliferation, cell signalling, cell cycle and effect on ER-mediated transcription. Two patient-derived xenografts (PDX) modelling endocrine resistance were used to assess the efficacy of vistusertib, fulvestrant or the combination on tumour progression, and biomarker studies were conducted using immunohistochemistry and RNA-seq technologies. Results Vistusertib caused a dose-dependent decrease in proliferation of all the cell lines tested and reduced abundance of mTORC1, mTORC2 and cell cycle markers, but caused an increase in abundance of EGFR, IGF1R and ERBB3 in a context-dependent manner. ER-mediated transcription showed minimal effect of vistusertib. Combined therapy of vistusertib with fulvestrant showed synergy in two ER+ PDX models of resistance to endocrine therapy and delayed tumour progression after cessation of therapy. Conclusions These data support the notion that models of acquired endocrine resistance may have a different sensitivity to mTOR inhibitor/endocrine therapy combinations.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Karina Chan ◽  
Francis Robert ◽  
Christian Oertlin ◽  
Dana Kapeller-Libermann ◽  
Daina Avizonis ◽  
...  

Abstract Pancreatic ductal adenocarcinoma (PDA) is a lethal malignancy with limited treatment options. Although metabolic reprogramming is a hallmark of many cancers, including PDA, previous attempts to target metabolic changes therapeutically have been stymied by drug toxicity and tumour cell plasticity. Here, we show that PDA cells engage an eIF4F-dependent translation program that supports redox and central carbon metabolism. Inhibition of the eIF4F subunit, eIF4A, using the synthetic rocaglate CR-1-31-B (CR-31) reduced the viability of PDA organoids relative to their normal counterparts. In vivo, CR-31 suppresses tumour growth and extends survival of genetically-engineered murine models of PDA. Surprisingly, inhibition of eIF4A also induces glutamine reductive carboxylation. As a consequence, combined targeting of eIF4A and glutaminase activity more effectively inhibits PDA cell growth both in vitro and in vivo. Overall, our work demonstrates the importance of eIF4A in translational control of pancreatic tumour metabolism and as a therapeutic target against PDA.


Sign in / Sign up

Export Citation Format

Share Document