scholarly journals In vitro assessment of triterpenoids NVX-207 and betulinyl-bis-sulfamate as a topical treatment for equine skin cancer

PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0241448
Author(s):  
Lisa Annabel Weber ◽  
Anne Funtan ◽  
Reinhard Paschke ◽  
Julien Delarocque ◽  
Jutta Kalbitz ◽  
...  

Equine sarcoid (ES) is the most prevalent skin tumor in equids worldwide. Additionally, aging grey horses frequently suffer from equine malignant melanoma (EMM). Current local therapies targeting these skin tumors remain challenging. Therefore, more feasible topical treatment options should be considered. In order to develop a topical therapy against ES and EMM, betulinyl-bis-sulfamate and NVX-207, derivatives of the naturally occurring betulin and betulinic acid, respectively, were evaluated for their antiproliferative (crystal violet staining assay), cytotoxic (MTS assay) and apoptotic (AnnexinV staining, cell cycle investigations) effects on primary ES cells, EMM cells and equine dermal fibroblasts in vitro. The more potent derivative was assessed for its in vitro penetration and permeation on isolated equine skin within 30 min and 24 h using Franz-type diffusion cells and HPLC analysis. Betulinyl-bis-sulfamate and NVX-207 inhibited the proliferation and metabolism in ES cells, EMM cells and fibroblasts significantly (p < 0.001) in a time- and dose-dependent manner. NVX-207 had superior anticancer effects compared to betulinyl-bis-sulfamate. Both compounds led to the externalization of phosphatidylserines on the cell membrane and DNA fragmentation, demonstrating that the effective mode of action was apoptosis. After 48 h of treatment with NVX-207, the number of necrotic cells was less than 2% in all cell types. Detected amounts of NVX-207 in the different skin layers exceeded the half-maximal inhibitory concentrations calculated by far. Even though data obtained in vitro are auspicious, the results are not unconditionally applicable to the clinical situation. Consequently, in vivo studies are required to address the antitumoral effects of topically applied NVX-207 in ES and EMM patients.

Rheumatology ◽  
2019 ◽  
Vol 59 (9) ◽  
pp. 2258-2263 ◽  
Author(s):  
Tiago Carvalheiro ◽  
Beatriz Malvar Fernández ◽  
Andrea Ottria ◽  
Barbara Giovannone ◽  
Wioleta Marut ◽  
...  

Abstract Objectives SSc is an autoimmune disease characterized by inflammation, vascular injury and excessive fibrosis in multiple organs. Secreted protein acidic and rich in cysteine (SPARC) is a matricellular glycoprotein that regulates processes involved in SSc pathology, such as inflammation and fibrosis. In vivo and in vitro studies have implicated SPARC in SSc, but it is unclear if the pro-fibrotic effects of SPARC on fibroblasts are a result of intracellular signalling or fibroblast interactions with extracellular SPARC hampering further development of SPARC as a potential therapeutic target. This study aimed to analyse the potential role of exogenous SPARC as a regulator of fibrosis in SSc. Methods Dermal fibroblasts from both healthy controls and SSc patients were stimulated with SPARC alone or in combination with TGF-β1, in the absence or presence of a TGF receptor 1 inhibitor. mRNA and protein expression of extracellular matrix components and other fibrosis-related mediators were measured by quantitative PCR and western blot. Results Exogenous SPARC induced mRNA and protein expression of collagen I, collagen IV, fibronectin 1, TGF-β and SPARC by dermal fibroblasts from SSc patients, but not from healthy controls. Importantly, exogenous SPARC induced the activation of the tyrosine kinase SMAD2 and pro-fibrotic gene expression induced by SPARC in SSc fibroblasts was abrogated by inhibition of TGF-β signalling. Conclusion These results indicate that exogenous SPARC is an important pro-fibrotic mediator contributing to the pathology driving SSc but in a TGF-β dependent manner. Therefore, SPARC could be a promising therapeutic target for reducing fibrosis in SSc patients, even in late states of the disease.


Author(s):  
Pollyana Ribeiro Castro ◽  
Lucas Felipe Fernandes Bittencourt ◽  
Sébastien Larochelle ◽  
Silvia Passos Andrade ◽  
Charles Reay Mackay ◽  
...  

Butyrate is a short-chain fatty acid (SCFA) derived from microbiota and is involved in a range of cell processes in a concentration-dependent manner. Low concentrations of sodium butyrate (NaBu) was shown to be proangiogenic. However, the mechanisms associated with these effects are not yet fully known. Here, we investigated the contribution of the SCFA receptor GPR43 in the proangiogenic effects of local treatment with NaBu and its effects on matrix remodeling using the sponge-induced fibrovascular tissue model in mice lacking the GPR43 gene (GPR43-KO) and the wild-type (WT). We demonstrated that NaBu (0.2 mM intraimplant) treatment enhanced the neovascularization process, blood flow, and VEGF levels in a GPR43-dependent manner in the implants. Moreover, NaBu was able to modulate matrix remodeling aspects of the granulation tissue such as proteoglycans production, collagen deposition and α-SMA expression in vivo, besides to increase TGF-b1 levels in the fibrovascular tissue, in a GPR43-dependent manner. Interestingly, NaBu directly stimulated L929 murine fibroblasts migration, and TGF-β1 and collagen production in vitro. GPR43 was found to be expressed in human dermal fibroblasts, myofibroblasts and endothelial cells. Overall, our findings evidence that the metabolite-sensing receptor GPR43 contributes to the effects of low dose of NaBu in inducing angiogenesis and matrix remodeling during granulation tissue formation. These data provide important insights for the proposition of new therapeutic approaches based on NaBu, beyond the highly explored intestinal, anti-inflammatory, and anti-cancer purposes, as a local treatment to improve tissue repair, particularly, by modulating granulation tissue components.


2014 ◽  
Vol 21 (6) ◽  
pp. 879-890 ◽  
Author(s):  
Sebastian Krug ◽  
Benjamin Kühnemuth ◽  
Heidi Griesmann ◽  
Albrecht Neesse ◽  
Leonie Mühlberg ◽  
...  

Pancreatic neuroendocrine neoplasms (PNENs) constitute a rare tumour entity, and prognosis and treatment options depend on tumour-mediating hallmarks such as angiogenesis, proliferation rate and resistance to apoptosis. The molecular pathways that determine the malignant phenotype are still insufficiently understood and this has limited the use of effective combination therapies in the past. In this study, we aimed to characterise the effect of the oncogenic transcription factor Cut homeobox 1 (CUX1) on proliferation, resistance to apoptosis and angiogenesis in murine and human PNENs. The expression and function ofCUX1were analysed using knockdown and overexpression strategies in Ins-1 and Bon-1 cells, xenograft models and a genetically engineered mouse model of insulinoma (RIP1Tag2). Regulation of angiogenesis was assessed using RNA profiling and functional tube-formation assays in HMEC-1 cells. Finally,CUX1expression was assessed in a tissue microarray of 59 human insulinomas and correlated with clinicopathological data.CUX1expression was upregulated during tumour progression in a time- and stage-dependent manner in the RIP1Tag2 model, and associated with pro-invasive and metastatic features of human insulinomas. Endogenous and recombinantCUX1expression increased tumour cell proliferation, tumour growth, resistance to apoptosis, and angiogenesisin vitroandin vivo. Mechanistically, the pro-angiogenic effect ofCUX1was mediated via upregulation of effectors such as HIF1α and MMP9.CUX1mediates an invasive pro-angiogenic phenotype and is associated with malignant behaviour in human insulinomas.


2019 ◽  
Author(s):  
Aydan Bulut-Karslioglu ◽  
Hu Jin ◽  
Marcela Guzman-Ayala ◽  
Andrew JK Williamson ◽  
Miroslav Hejna ◽  
...  

AbstractStem and progenitor cells undergo a global elevation of nascent transcription, or hypertranscription, during key developmental transitions involving rapid cell proliferation. The chromatin remodeler Chd1 binds to genes transcribed by RNA Polymerase (Pol) I and II and is required for hypertranscription in embryonic stem (ES) cells in vitro and the early post-implantation epiblast in vivo. Biochemically, Chd1 has been shown to facilitate transcription at least in part by removing nucleosomal barriers to elongation, but its mechanism of action in stem cells remains poorly understood. Here we report a novel role for Chd1 in the repair of promoter-proximal endogenous double-stranded DNA breaks (DSBs) in ES cells. An unbiased proteomics approach revealed that Chd1 interacts with several DNA repair factors including Atm, Parp1, Kap1 and Topoisomerase 2β. We show that wild-type ES cells display high levels of phosphorylated H2A.X and Kap1 at chromatin, notably at rDNA in the nucleolus, in a Chd1-dependent manner. Loss of Chd1 leads to an extensive accumulation of DSBs at Chd1-bound Pol II-transcribed genes and rDNA. Genes prone to DNA breaks in Chd1 KO ES cells tend to be longer genes with GC-rich promoters, a more labile nucleosomal structure and roles in chromatin regulation, transcription and signaling. These results reveal a vulnerability of hypertranscribing stem cells to endogenous DNA breaks, with important implications for developmental and cancer biology.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xiaolan Yang ◽  
Yongqiang Xiao ◽  
Chenjian Zhong ◽  
Futing Shu ◽  
Shichu Xiao ◽  
...  

Background: Inhibiting proliferation and inducing apoptosis of myofibroblasts is becoming one of the promising and effective ways to treat hypertrophic scar. ABT-263, as an orally bioavailable BCL-2 family inhibitor, has showed great antitumor characteristics by targeting tumor cell apoptosis. The objective of this study was to explore whether ABT-263 could target apoptosis of overactivated myofibroblasts in hypertrophic scar.Methods:In vivo, we used ABT-263 to treat scars in a rabbit ear scar model. Photographs and ultrasound examination were taken weekly, and scars were harvested on day 42 for further Masson trichrome staining. In vitro, the expression levels of BCL-2 family members, including prosurvival proteins, activators, and effectors, were detected systematically in hypertrophic scar tissues and adjacent normal skin tissues, as well as in human hypertrophic scar fibroblasts (HSFs) and human normal dermal fibroblasts (HFBs). The roles of ABT-263 in apoptosis and proliferation of HSFs and HFBs were determined by annexin V/PI assay, CCK-8 kit, and cell cycle analysis. Mitochondrial membrane potential was evaluated by JC-1 staining and the expression of type I/III collagen and α-SMA was measured by PCR, western blotting, and immunofluorescence staining. Furthermore, immunoprecipitation was performed to explore the potential mechanism.Results:In vivo, ABT-263 could significantly improve the scar appearance and collagen arrangement, decrease scar elevation index (SEI), and induce cell apoptosis. In vitro, the expression levels of BCL-2, BCL-XL, and BIM were significantly higher in scar tissues and HSFs than those in normal skin tissues and HFBs. ABT-263 selectively induced HSFs apoptosis by releasing BIM from binding with prosurvival proteins. Moreover, ABT-263 inhibited HSFs proliferation and reduced the expression of α-SMA and type I/III collagen in a concentration- and time- dependent manner.Conclusion: HSFs showed increased mitochondrial priming with higher level of proapoptotic activator BIM and were primed to death. ABT-263 showed great therapeutic ability in the treatment of hypertrophic scar by targeting HSFs.


Author(s):  
Byungcheol Lee ◽  
Jisun Song ◽  
Arim Lee ◽  
Daeho Cho ◽  
Tae Sung Kim

Visfatin, a member of the adipokine family, plays an important role in many metabolic and stress responses. The mechanisms underlying the direct therapeutic effects of visfatin on wound healing have not been reported yet. In this study, we examined the effects of visfatin on wound healing in vitro and in vivo. Visfatin enhanced the proliferation and migration of human dermal fibroblasts (HDFs) and keratinocytes, and significantly increased the expression of wound healing-related vascular endothelial growth factor (VEGF) in vitro and in vivo. Treatment of HDFs with visfatin induced activation of both extracellular signal-regulated kinases 1 and 2 (ERK1/2) and c-Jun N-terminal kinases 1 and 2 (JNK1/2) in a time-dependent manner. Inhibition of ERK1/2 and JNK1/2 led to a significant decrease in visfatin-induced proliferation and migration of HDFs. Importantly, blocking VEGF with its neutralizing antibodies suppressed the visfatin-induced proliferation and migration of HDFs and human keratinocytes, indicating that visfatin induces the proliferation and migration of HDFs and human keratinocytes via increased VEGF expression. Moreover, visfatin effectively improved wound repair in vivo, which was comparable to the wound healing activity of epidermal growth factor (EGF). Taken together, we demonstrate that visfatin promotes the proliferation and migration of HDFs and human keratinocytes by inducing VEGF expression and can be used as a potential novel therapeutic agent for wound healing.


2014 ◽  
Vol 104 (6) ◽  
pp. 568-573 ◽  
Author(s):  
Richard A. Pollak

Background Toenail onychomycosis is a common disease with limited treatment options; treatment failure and relapse are frequently encountered. Many patients experience long-standing disease affecting multiple toenails, with substantial discomfort and pain. Although some patients might prefer a topical therapy, efficacy with ciclopirox nail lacquer has been disappointing. Methods Efinaconazole topical solution, 10% is the first topical triazole antifungal agent specifically developed for the treatment of onychomycosis. This paper reviews the preclinical and clinical data on efinaconazole topical solution, 10%. Results Efinaconazole has a broad spectrum of antifungal activity in vitro and is more potent than ciclopirox against common onychomycosis pathogens. It has a more optimal keratin affinity than ciclopirox, and it exhibits significantly greater in vivo activity owing to its superior nail penetration. Mycologic cure rates at week 52 were 55.2% (study 1) and 53.4% (study 2) with efinaconazole topical solution, 10% compared with 16.8% and 16.9%, respectively, with vehicle (P&lt;.001 for both). In addition, efinaconazole is well tolerated. Conclusions Efinaconazole topical solution, 10% may likely become a preferred topical agent for the management of mild-to-moderate onychomycosis.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Raymond Chang ◽  
Umberto Tosi ◽  
Julia Voronina ◽  
Oluwaseyi Adeuyan ◽  
Linda Y Wu ◽  
...  

Abstract Background Midline gliomas like diffuse intrinsic pontine glioma (DIPG) carry poor prognosis and lack effective treatment options. Studies have implicated amplifications in the phosphatidylinositol 3-kinase (PI3K) signaling pathway in tumorigenesis; compensatory activation of parallel pathways (eg, mitogen-activated protein kinase [MEK]) may underlie the resistance to PI3K inhibition observed in the clinic. Methods Three patient-derived cell lines (SU-DIPG-IV, SU-DIPG-XIII, and SF8628) and a mouse-derived brainstem glioma cell line were treated with PI3K (ZSTK474) and MEK (trametinib) inhibitors, alone or in combination. Synergy was analyzed using Chou-Talalay combination index (CI). These agents were also used alone or in combination in a subcutaneous SU-DIPG-XIII tumor model and in an intracranial genetic mouse model of DIPG, given via convection-enhanced delivery (CED). Results We found that these agents abrogate cell proliferation in a dose-dependent manner. Combination treatments were found to be synergistic (CI &lt; 1) across cell lines tested. They also showed significant tumor suppression when given systemically against a subcutaneous DIPG model (alone or in combination) or when given via direct intracranial injection (CED) in a intracranial DIPG mouse model (combination only, median survival 47 vs 35 days post-induction, P = .038). No significant short- or long-term neurotoxicity of ZSTK474 and trametinib delivered via CED was observed. Conclusions Our data indicate that ZSTK474 and trametinib combinatorial treatment inhibits malignant growth of DIPG cells in vitro and in vivo, prolonging survival. These results suggest a promising new combinatorial approach using CED for DIPG therapy, which warrants further investigation.


2018 ◽  
Vol 19 (11) ◽  
pp. 3642 ◽  
Author(s):  
Byung-Cheol Lee ◽  
Jisun Song ◽  
Arim Lee ◽  
Daeho Cho ◽  
Tae Kim

Visfatin, a member of the adipokine family, plays an important role in many metabolic and stress responses. The mechanisms underlying the direct therapeutic effects of visfatin on wound healing have not been reported yet. In this study, we examined the effects of visfatin on wound healing in vitro and in vivo. Visfatin enhanced the proliferation and migration of human dermal fibroblasts (HDFs) and keratinocytes the expression of wound healing-related vascular endothelial growth factor (VEGF) in vitro and in vivo. Treatment of HDFs with visfatin induced activation of both extracellular signal-regulated kinases 1 and 2 (ERK1/2) and c-Jun N-terminal kinases 1 and 2 (JNK1/2) in a time-dependent manner. Inhibition of ERK1/2 and JNK1/2 led to a significant decrease in visfatin-induced proliferation and migration of HDFs. Importantly, blocking VEGF with its neutralizing antibodies suppressed the visfatin-induced proliferation and migration of HDFs and human keratinocytes, indicating that visfatin induces the proliferation and migration of HDFs and human keratinocytes via increased VEGF expression. Moreover, visfatin effectively improved wound repair in vivo, which was comparable to the wound healing activity of epidermal growth factor (EGF). Taken together, we demonstrate that visfatin promotes the proliferation and migration of HDFs and human keratinocytes by inducing VEGF expression and can be used as a potential novel therapeutic agent for wound healing.


2019 ◽  
Vol 26 (7) ◽  
pp. 494-501 ◽  
Author(s):  
Sameer Suresh Bhagyawant ◽  
Dakshita Tanaji Narvekar ◽  
Neha Gupta ◽  
Amita Bhadkaria ◽  
Ajay Kumar Gautam ◽  
...  

Background: Diabetes and hypertension are the major health concern and alleged to be of epidemic proportions. This has made it a numero uno subject at various levels of investigation. Glucosidase inhibitor provides the reasonable option in treatment of Diabetes Mellitus (DM) as it specifically targets post prandial hyperglycemia. The Angiotensin Converting Enzyme (ACE) plays an important role in hypertension. Therefore, inhibition of ACE in treatment of elevated blood pressure attracts special interest of the scientific community. Chickpea is a food legume and seeds contain carbohydrate binding protein- a lectin. Some of the biological properties of this lectin hitherto been elucidated. Methods: Purified by ion exchange chromatography, chickpea lectin was tested for its in vitro antioxidant, ACE-I inhibitory and anti-diabetic characteristic. Results: Lectin shows a characteristic improvement over the synthetic drugs like acarbose (oral anti-diabetic drug) and captopril (standard antihypertensive drug) when, their IC50 values are compared. Lectin significantly inhibited α-glucosidase and α-amylase in a concentration dependent manner with IC50 values of 85.41 ± 1.21 ҝg/ml and 65.05 ± 1.2 µg/ml compared to acarbose having IC50 70.20 ± 0.47 value of µg/ml and 50.52 ± 1.01 µg/ml respectively. β-Carotene bleaching assay showed antioxidant activity of lectin (72.3%) to be as active as Butylated Hydroxylanisole (BHA). In addition, lectin demonstrated inhibition against ACE-I with IC50 value of 57.43 ± 1.20 µg/ml compared to captopril. Conclusion: Lectin demonstrated its antioxidant character, ACE-I inhibition and significantly inhibitory for α-glucosidase and α-amylase seems to qualify as an anti-hyperglycemic therapeutic molecule. The biological effects of chickpea lectin display potential for reducing the parameters of medically debilitating conditions. These characteristics however needs to be established under in vivo systems too viz. animals through to humans.


Sign in / Sign up

Export Citation Format

Share Document