scholarly journals WOMEN IN CANCER PROFILE: My pathway to understanding the role of the tumour microenvironment in cancer progression

2016 ◽  
Vol 23 (11) ◽  
pp. P27-P31 ◽  
Author(s):  
Carmela Ricciardelli
Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1239
Author(s):  
Leila Jahangiri ◽  
Tala Ishola ◽  
Perla Pucci ◽  
Ricky M. Trigg ◽  
Joao Pereira ◽  
...  

Cancer stem cells (CSCs) possess properties such as self-renewal, resistance to apoptotic cues, quiescence, and DNA-damage repair capacity. Moreover, CSCs strongly influence the tumour microenvironment (TME) and may account for cancer progression, recurrence, and relapse. CSCs represent a distinct subpopulation in tumours and the detection, characterisation, and understanding of the regulatory landscape and cellular processes that govern their maintenance may pave the way to improving prognosis, selective targeted therapy, and therapy outcomes. In this review, we have discussed the characteristics of CSCs identified in various cancer types and the role of autophagy and long noncoding RNAs (lncRNAs) in maintaining the homeostasis of CSCs. Further, we have discussed methods to detect CSCs and strategies for treatment and relapse, taking into account the requirement to inhibit CSC growth and survival within the complex backdrop of cellular processes, microenvironmental interactions, and regulatory networks associated with cancer. Finally, we critique the computationally reinforced triangle of factors inclusive of CSC properties, the process of autophagy, and lncRNA and their associated networks with respect to hypoxia, epithelial-to-mesenchymal transition (EMT), and signalling pathways.


2021 ◽  
Vol 2 ◽  
Author(s):  
Kamila J. Bienkowska ◽  
Christopher J. Hanley ◽  
Gareth J. Thomas

The role of the tumour microenvironement (TME) in cancer progression and resistance to therapies is now widely recognized. The most prominent non-immune cell type in the microenvironment of oral cancer (OSCC) is cancer-associated fibroblasts (CAF). Although CAF are a poorly characterised and heterogenous cell population, those with an “activated” myofibroblastic phenotype have been shown to support OSCC progression, promoting growth, invasion and numerous other “hallmarks of malignancy.” CAF also confer broad resistance to different types of therapy, including chemo/radiotherapy and EGFR inhibitors; consistent with this, CAF-rich OSCC are associated with poor prognosis. In recent years, much CAF research has focused on their immunological role in the tumour microenvironment, showing that CAF shield tumours from immune attack through multiple mechanisms, and particularly on their role in promoting resistance to anti-PD-1/PD-L1 checkpoint inhibitors, an exciting development for the treatment of recurrent/metastatic oral cancer, but which fails in most patients. This review summarises our current understanding of CAF subtypes and function in OSCC and discusses the potential for targeting these cells therapeutically.


2020 ◽  
Vol 28 ◽  
Author(s):  
Rama Rao Malla ◽  
Gugalavath Shailender ◽  
Mohammad Amjad Kamal

: Tumour microenvironment (TME) is a resident of a variety of cells, which devoted to the heterogeneous population of the tumour. TME establishes a communication network for crosstalk and signalling between tumour cells, stroma, and other interstitial cells. The cross-communication drives the reprogramming of TME cells, which promote cancer progression and metastasis via diverse signalling pathways. Recently, TME-derived exosomes are recognized as critical communicators of TME cell reprogramming. This review addresses the role of TME-derived exosomes in the modulation of stroma, including reprogramming the stromal cells, ECM and tumour cell metabolism, as well as neoplastic transformation. Subsequently, we described the role of exosomes in pre-metastatic niche development, maintenance of stemness and tumour vasculature as well as development of drug resistance. We also explored tumour-derived exosomes in precision, including diagnosis, drug delivery, and vaccine development. We discussed the currently established bioengineered exosomes as carriers for chemotherapeutic drugs, RNAi molecules, and natural compounds. Finally, we presented tetraspanin and DNAbased precision methods for the quantification of tumour-derived exosomes. Overall, TME-derived exosome-mediated reprogramming of TME and precision strategies could illuminate the potential mechanisms for targeted therapeutic intervention.


Oncogenesis ◽  
2020 ◽  
Vol 9 (9) ◽  
Author(s):  
Guofang Chen ◽  
Binya Liu ◽  
Shasha Yin ◽  
Shuangdi Li ◽  
Yu’e Guo ◽  
...  

Abstract Endometrial cancer stem cells (ECSCs) are stem-like cells endowed with self-renewal and differentiation abilities, and these cells are essential for cancer progression in endometrial cancer (EC). As hallmarks of the tumour microenvironment (TME), hypoxia and hypoxia-inducing factors (HIFs) give rise to the dysregulation of tumour stemness genes, such as SOX2. Against this backdrop, we investigated the regulatory mechanisms regulated by HIFs and SOX2 in ECSCs during EC development. Here, ECSCs isolated from EC cell lines and tissues were found to express stemness genes (CD133 and aldehyde dehydrogenase, ALDH1) following the induction of their ECSC expansion. Notably, m6A methylation of RNA and HIF-1α/2α-dependent AlkB homologue 5 (ALKBH5) participate in the regulation of HIFs and SOX2 in EC, as confirmed by the observations that mRNA levels of m6A demethylases and ALKBH5 significantly increase under hypoxic conditions in ECSCs. Moreover, hypoxia and high ALKBH5 levels restore the stem-like state of differentiated ECSCs and increase the ECSC-like phenotype, whereas the knockdown of HIFs or ALKBH5 significantly reduces their tumour initiation capacity. In addition, our findings validate the role of ALKBH5 in promoting SOX2 transcription via mRNA demethylation, thereby maintaining the stem-like state and tumorigenicity potential of ECSCs. In conclusion, these observations demonstrate a critical role for m6A methylation-mediated regulation of the HIF-ALKBH5-SOX2 axis during ECSC expansion in hypoxic TMEs.


Author(s):  
Eva Crosas-Molist ◽  
Remi Samain ◽  
Leonie Kohlhammer ◽  
Jose Orgaz ◽  
Samantha George ◽  
...  

Rho GTPases are a family of small G proteins that regulate a wide array of cellular processes related to their key roles controlling the cytoskeleton. On the other hand, cancer is a multi-step disease caused by the accumulation of genetic mutations and epigenetic alterations, from the initial stages of cancer development when cells in normal tissues undergo transformation, to the acquisition of invasive and metastatic traits, responsible for a large number of cancer related deaths. In this review, we discuss the role of Rho GTPase signalling in cancer in every step of disease progression. Rho GTPases contribute to tumour initiation and progression, by regulating proliferation and apoptosis, but also metabolism, senescence and cell stemness. Rho GTPases play a major role in cell migration, and in the metastatic process. They are also involved in interactions with the tumour microenvironment and regulate inflammation, contributing to cancer progression. After years of intensive research, we highlight the importance of relevant models in the Rho GTPase field, and we reflect on the therapeutic opportunities arising for cancer patients.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Stefano Mangiola ◽  
Patrick McCoy ◽  
Martin Modrak ◽  
Fernando Souza-Fonseca-Guimaraes ◽  
Daniel Blashki ◽  
...  

Abstract Background Prostate cancer is caused by genomic aberrations in normal epithelial cells, however clinical translation of findings from analyses of cancer cells alone has been very limited. A deeper understanding of the tumour microenvironment is needed to identify the key drivers of disease progression and reveal novel therapeutic opportunities. Results In this study, the experimental enrichment of selected cell-types, the development of a Bayesian inference model for continuous differential transcript abundance, and multiplex immunohistochemistry permitted us to define the transcriptional landscape of the prostate cancer microenvironment along the disease progression axis. An important role of monocytes and macrophages in prostate cancer progression and disease recurrence was uncovered, supported by both transcriptional landscape findings and by differential tissue composition analyses. These findings were corroborated and validated by spatial analyses at the single-cell level using multiplex immunohistochemistry. Conclusions This study advances our knowledge concerning the role of monocyte-derived recruitment in primary prostate cancer, and supports their key role in disease progression, patient survival and prostate microenvironment immune modulation.


2020 ◽  
Author(s):  
Stefano Mangiola ◽  
Patrick McCoy ◽  
Martin Modrak ◽  
Fernando Souza-Fonseca-Guimaraes ◽  
Daniel Blashki ◽  
...  

AbstractProstate cancer is caused by genomic aberrations in normal epithelial cells, however clinical translation of findings from analyses of cancer cells alone has been very limited. A deeper understanding of the tumour microenvironment is needed to identify the key drivers of disease progression and reveal novel therapeutic opportunities. In this study, the experimental enrichment of selected cell-types and the development of a Bayesian inference model for continuous differential transcript abundance permitted us to define the transcriptional landscape of the prostate cancer microenvironment along the disease progression axis. An important role of monocytes and macrophages in prostate cancer progression and disease recurrence was uncovered, supported by both transcriptional landscape findings and by differential tissue composition analyses. These findings were corroborated and validated by spatial analyses at the single-cell level using multiplex immunohistochemistry. This study advances our knowledge concerning the role of monocyte-derived recruitment in primary prostate cancer, and supports their key role in disease progression, patient survival and prostate microenvironment immune modulation.


2021 ◽  
Author(s):  
Johanna Marines ◽  
Francesca Lorenzini ◽  
karima kissa ◽  
Laura FONTENILLE

Recently, many studies demonstrated the fundamental role of tumour microenvironment (TME) in cancer progression. Here, we describe a state-of-the-art method to visualize in 3D the behaviour of tumours in zebrafish embryos. We highlight two major actors of TME, macrophages and vessels. This valuable tool is transposable to Patients Derived Xenograft imaging in order to predict the fate of malignant tumours according to the dynamics of their TME.


2017 ◽  
Vol 373 (1737) ◽  
pp. 20160485 ◽  
Author(s):  
Lucía Robado de Lope ◽  
Olwen Leaman Alcíbar ◽  
Ana Amor López ◽  
Marta Hergueta-Redondo ◽  
Héctor Peinado

During metastasis, tumour cells must communicate with their microenvironment by secreted soluble factors and extracellular vesicles. Different stromal cell types (e.g. bone marrow–derived cells, endothelial cells and fibroblasts) influence the growth and progression of tumours. In recent years, interest has extended to other cell types in the tumour microenvironment such as adipocytes and adipose tissue–derived mesenchymal stem cells. Indeed, obesity is becoming pandemic in some developing countries and it is now considered to be a risk factor for cancer progression. However, the true impact of obesity on the metastatic behaviour of tumours is still not yet fully understood. In this ‘Perspective’ article, we will discuss the potential influence of obesity on tumour metastasis, mainly in melanoma, breast and ovarian cancer. We summarize the main mechanisms involved with special attention to the role of extracellular vesicles in this process. We envisage that besides having a direct impact on tumour cells, obesity systemically preconditions the tumour microenvironment for future metastasis by favouring the formation of pro-inflammatory niches. This article is part of the discussion meeting issue ‘Extracellular vesicles and the tumour microenvironment’.


Sign in / Sign up

Export Citation Format

Share Document