scholarly journals TOP1MT deficiency promotes GC invasion and migration via the enhancements of LDHA expression and aerobic glycolysis

2017 ◽  
Vol 24 (11) ◽  
pp. 565-578 ◽  
Author(s):  
Hongqiang Wang ◽  
Rui Zhou ◽  
Li Sun ◽  
Jianling Xia ◽  
Xuchun Yang ◽  
...  

Aerobic glycolysis plays an important role in cancer progression. New target genes regulating cancer aerobic glycolysis must be explored to improve patient prognosis. Mitochondrial topoisomerase I (TOP1MT) deficiency suppresses glucose oxidative metabolism but enhances glycolysis in normal cells. Here, we examined the role of TOP1MT in gastric cancer (GC) and attempted to determine the underlying mechanism. Using in vitro and in vivo experiments and analyzing the clinicopathological characteristics of patients with GC, we found that TOP1MT expression was lower in GC samples than in adjacent nonmalignant tissues. TOP1MT knockdown significantly promoted GC migration and invasion in vitro and in vivo. Importantly, TOP1MT silencing increased glucose consumption, lactate production, glucose transporter 1 expression and the epithelial-mesenchymal transition (EMT) in GC. Additionally, regulation of glucose metabolism induced by TOP1MT was significantly associated with lactate dehydrogenase A (LDHA) expression. A retrospective analysis of clinical data from 295 patients with GC demonstrated that low TOP1MT expression was associated with lymph node metastasis, recurrence and high mortality rates. TOP1MT deficiency enhanced glucose aerobic glycolysis by stimulating LDHA to promote GC progression.

2020 ◽  
Author(s):  
Hui Guo ◽  
Jianping Zou ◽  
Ling Zhou ◽  
Yan He ◽  
Miao Feng ◽  
...  

Abstract Background:Nucleolar and spindle associated protein (NUSAP1) is involved in tumor initiation, progression and metastasis. However, there are limited studies regarding the role of NUSAP1 in gastric cancer (GC). Methods: The expression profile and clinical significance of NUSAP1 in GC were analysed in online database using GEPIA, Oncomine and KM plotter, which was further confirmed in clinical specimens.The functional role of NUSAP1 were detected utilizing in vitro and in vivo assays. Western blotting, qRT-PCR, the cycloheximide-chase, immunofluorescence staining and Co-immunoprecipitaion (Co-IP) assays were performed to explore the possible molecular mechanism by which NUSAP1 stabilizes YAP protein. Results:In this study, we found that the expression of NUSAP1 was upregulated in GC tissues and correlates closely with progression and prognosis. Additionally, abnormal NUSAP1 expression promoted malignant behaviors of GC cells in vitro and in a xenograft model. Mechanistically, we discovered that NUSAP1 physically interacts with YAP and furthermore stabilizes YAP protein expression, which induces the transcription of Hippo pathway downstream target genes. Furthermore, the effects of NUSAP1 on GC cell growth, migration and invasion were mainly mediated by YAP. Conclusions:Our data demonstrates that the novel NUSAP1-YAP axis exerts an critical role in GC tumorigenesis and progression, and therefore could provide a novel therapeutic target for GC treatment.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Songwen Ju ◽  
Feng Wang ◽  
Yirong Wang ◽  
Songguang Ju

AbstractHypoxic stress plays a pivotal role in cancer progression; however, how hypoxia drives tumors to become more aggressive or metastatic and adaptive to adverse environmental stress is still poorly understood. In this study, we revealed that CSN8 might be a key regulatory switch controlling hypoxia-induced malignant tumor progression. We demonstrated that the expression of CSN8 increased significantly in colorectal cancerous tissues, which was correlated with lymph node metastasis and predicted poor patient survival. CSN8 overexpression induces the epithelial-mesenchymal transition (EMT) process in colorectal cancer cells, increasing migration and invasion. CSN8 overexpression arrested cell proliferation, upregulated key dormancy marker (NR2F1, DEC2, p27) and hypoxia response genes (HIF-1α, GLUT1), and dramatically enhanced survival under hypoxia, serum deprivation, or chemo-drug 5-fluorouracil treatment conditions. In particular, silenced CSN8 blocks the EMT and dormancy processes induced by the hypoxia of 1% O2 in vitro and undermines the adaptive capacity of colorectal cancer cells in vivo. The further study showed that CSN8 regulated EMT and dormancy partly by activating the HIF-1α signaling pathway, which increased HIF-1α mRNA expression by activating NF-κB and stabilized the HIF-1α protein via HIF-1α de-ubiquitination. Taken together, CSN8 endows primary colorectal cancer cells with highly aggressive/metastatic and adaptive capacities through regulating both EMT and dormancy induced by hypoxia. CSN8 could serve as a novel prognostic biomarker for colorectal cancer and would be an ideal target of disseminated dormant cell elimination and tumor metastasis, recurrence, and chemoresistance prevention.


2020 ◽  
Author(s):  
Sisi Wei ◽  
Shiping Sun ◽  
Xinliang Zhou ◽  
Cong Zhang ◽  
Xiaoya Li ◽  
...  

Abstract A substantial fraction of transcripts are known as long noncoding RNAs (lncRNAs), and these transcripts play pivotal roles in the development of cancer. However, little information has been published regarding the functions of lncRNAs in oesophageal squamous cell carcinoma (ESCC) and the underlying mechanisms. In our previous studies, we demonstrated that small nucleolar RNA host gene 5 (SNHG5), a known lncRNA, is dysregulated in gastric cancer (GC). In this study, we explored the expression and function of SNHG5 in development of ESCC. SNHG5 was found to be downregulated in human ESCC tissues and cell lines, and this downregulation was associated with cancer progression, clinical outcomes and survival rates of ESCC patients. Furthermore, we also found that overexpression of SNHG5 significantly inhibited the proliferation, migration and invasion of ESCC cells in vivo and in vitro. Notably, we found that metastasis-associated protein 2 (MTA2) was pulled down by SNHG5 in ESCC cells using RNA pulldown assay. We also found that SNHG5 reversed the epithelial–mesenchymal transition by interacting with MTA2. In addition, overexpression of SNHG5 downregulated the transcription of MTA2 and caused its ubiquitin-mediated degradation. Thus, overexpression of MTA2 partially abrogated the effect of SNHG5 in ESCC cell lines. Furthermore, we found that MTA2 mRNA expression was significantly elevated in ESCC specimens, and a negative correlation between SNHG5 and MTA2 expression was detected. Overall, this study demonstrated, for the first time, that SNHG5-regulated MTA2 functions as an important player in the progression of ESCC and provide a new potential therapeutic strategy for ESCC.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5710
Author(s):  
Xiaohui Zhang ◽  
Tingyu Li ◽  
Ya-Nan Han ◽  
Minghui Ge ◽  
Pei Wang ◽  
...  

Metastasis contributes to the poor prognosis of colorectal cancer, the causative factor of which is not fully understood. Previously, we found that miR-125b (Accession number: MIMAT0000423) contributed to cetuximab resistance in colorectal cancer (CRC). In this study, we identified a novel mechanism by which miR-125b enhances metastasis by targeting cystic fibrosis transmembrane conductance regulator (CFTR) and the tight junction-associated adaptor cingulin (CGN) in CRC. We found that miR-125b expression was upregulated in primary CRC tumors and metastatic sites compared with adjacent normal tissues. Overexpression of miR-125b in CRC cells enhanced migration capacity, while knockdown of miR-125b decreased migration and invasion. RNA-sequencing (RNA-seq) and dual-luciferase reporter assays identified CFTR and CGN as the target genes of miR-125b, and the inhibitory impact of CFTR and CGN on metastasis was further verified both in vitro and in vivo. Moreover, we found that miR-125b facilitated the epithelial-mesenchymal transition (EMT) process and the expression and secretion of urokinase plasminogen activator (uPA) by targeting CFTR and enhanced the Ras Homolog Family Member A (RhoA)/Rho Kinase (ROCK) pathway activity by targeting CGN. Together, these findings suggest miR-125b as a key functional molecule in CRC and a promising biomarker for the diagnosis and treatment of CRC.


Cancers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1477 ◽  
Author(s):  
Yoo ◽  
Lee ◽  
Jun ◽  
Noh ◽  
Lee ◽  
...  

Yes-associated protein (YAP)-1 is highly upregulated in pancreatic cancer and associated with tumor progression. However, little is known about the role of YAP1 and related genes in pancreatic cancer. Here, we identified target genes regulated by YAP1 and explored their role in pancreatic cancer progression and the related clinical implications. Analysis of different pancreatic cancer databases showed that Neuromedin U (NMU) expression was positively correlated with YAP1 expression in the tumor group. The Cancer Genome Atlas data indicated that high YAP1 and NMU expression levels were associated with poor mean and overall survival. YAP1 overexpression induced NMU expression and transcription and promoted cell motility in vitro and tumor metastasis in vivo via upregulation of epithelial–mesenchymal transition (EMT), whereas specific inhibition of NMU in cells stably expressing YAP1 had the opposite effect in vitro and in vivo. To define this functional association, we identified a transcriptional enhanced associate domain (TEAD) binding site in the NMU promoter and demonstrated that YAP1–TEAD binding upstream of the NMU gene regulated its transcription. These results indicate that the identified positive correlation between YAP1 and NMU is a potential novel drug target and biomarker in metastatic pancreatic cancer.


2019 ◽  
Vol 39 (5) ◽  
Author(s):  
Bin Dai ◽  
Guanghua Zhou ◽  
Zhiqiang Hu ◽  
Guangtong Zhu ◽  
Beibei Mao ◽  
...  

AbstractEpithelial–mesenchymal transition (EMT) plays a pivotal role in cancer progression. Hsa-miR-205 is considered one of the fundamental regulators of EMT. In the present study, we found that miR-205 was down-regulated in glioma tissues and human glioma cells U87 and U251. Meanwhile, miR-205 overexpression enhanced E-cadherin, reduced mesenchymal markers, and decreased cell proliferation, migration, and invasion in vitro. In vivo, miR-205 suppressed tumor growth. Additionally, HOXD9 was confirmed as a direct target of miR-205. Suppression of HOXD9 by miR-205 was demonstrated by luciferase reporter assay, quantitative real time-PCR analysis, and western blot. Moreover, we observed a negative correlation between miR-205 and HOXD9 in human glioma tissues. In summary, our findings demonstrated that miR-205 suppresses glioma tumor growth, invasion, and reverses EMT through down-regulating its target HOXD9.


2016 ◽  
Vol 39 (2) ◽  
pp. 501-510 ◽  
Author(s):  
Xiaoyan Ying ◽  
Kuang Wei ◽  
Zhe Lin ◽  
Yugui Cui ◽  
Jie Ding ◽  
...  

Background/Aims: MicroRNA-125b (miR-125b) is overexpressed in several types of cancer and contributes to chemotherapy resistance. However, its role in epithelial ovarian carcinoma remains unknown. The goal of this study was to identify the relationship between miR-125b and the epithelial-mesenchymal transition (EMT) in ovarian cancer. Methods: In total, 55patients with epithelial ovarian cancer (EOC) were included in our study. The relative expression of miR-125b was measured using real-time polymerase chain reaction (RT-PCR).The protein expression of SET and EMT-related indicators in cell lines were assessed by Western blot. The regulation of SET by miR-125b was confirmed using luciferase reporter assays. The effect of miR-125b on metastasis was evaluated using an in vivo metastasis model. Results: miR-125b expression was markedly lower in the EOC specimens. Ectopic expression of miR-125b in EOC cells significantly inhibited tumor invasion.miR-125b expression was negatively associated with both EMT and SET expression, in vivo and in vitro. Mechanistic studies identified SET as a direct target of miR-125b, and the downregulation of SET, observed during tumor migration, was affected by the overexpression of miR125b. Conclusion: miR-125b suppresses EOC cell migration and invasion by targeting the SET protein, and this study may provide a novel mechanism for understanding the progression of EOC.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Chun Cheng ◽  
Jun Yang ◽  
Si-Wei Li ◽  
Guofu Huang ◽  
Chenxi Li ◽  
...  

AbstractHistone deacetylases (HDACs) are involved in tumor progression, and some have been successfully targeted for cancer therapy. The expression of histone deacetylase 4 (HDAC4), a class IIa HDAC, was upregulated in our previous microarray screen. However, the role of HDAC4 dysregulation and mechanisms underlying tumor growth and metastasis in nasopharyngeal carcinoma (NPC) remain elusive. Here, we first confirmed that the HDAC4 levels in primary and metastatic NPC tissues were significantly increased compared with those in normal nasopharyngeal epithelial tissues and found that high HDAC4 expression predicted a poor overall survival (OS) and progression-free survival (PFS). Functionally, HDAC4 accelerated cell cycle G1/S transition and induced the epithelial-to-mesenchymal transition to promote NPC cell proliferation, migration, and invasion in vitro, as well as tumor growth and lung metastasis in vivo. Intriguingly, knockdown of N-CoR abolished the effects of HDAC4 on the invasion and migration abilities of NPC cells. Mechanistically, HDAC3/4 binds to the E-cadherin promoter to repress E-cadherin transcription. We also showed that the HDAC4 inhibitor tasquinimod suppresses tumor growth in NPC. Thus, HDAC4 may be a potential diagnostic marker and therapeutic target in patients with NPC.


Oncogenesis ◽  
2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Xin Huang ◽  
Yichao Hou ◽  
Xiaoling Weng ◽  
Wenjing Pang ◽  
Lidan Hou ◽  
...  

AbstractExploring novel anticancer drugs to optimize the efficacy may provide a benefit for the treatment of colorectal cancer (CRC). Disulfiram (DSF), as an antialcoholism drug, is metabolized into diethyldithiocarbamate-copper complex (CuET) in vivo, which has been reported to exert the anticancer effects on various tumors in preclinical studies. However, little is known about whether CuET plays an anti-cancer role in CRC. In this study, we found that CuET had a marked effect on suppressing CRC progression both in vitro and in vivo by reducing glucose metabolism. Mechanistically, using RNA-seq analysis, we identified ALDH1A3 as a target gene of CuET, which promoted cell viability and the capacity of clonal formation and inhibited apoptosis in CRC cells. MicroRNA (miR)-16-5p and 15b-5p were shown to synergistically regulate ALDH1A3, which was negatively correlated with both of them and inversely correlated with the survival of CRC patients. Notably, using co-immunoprecipitation followed with mass spectrometry assays, we identified PKM2 as a direct downstream effector of ALDH1A3 that stabilized PKM2 by reducing ubiquitination. Taken together, we disclose that CuET treatment plays an active role in inhibiting CRC progression via miR-16-5p and 15b-5p/ALDH1A3/PKM2 axis–mediated aerobic glycolysis pathway.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Anqi Xu ◽  
Xizhao Wang ◽  
Jie Luo ◽  
Mingfeng Zhou ◽  
Renhui Yi ◽  
...  

AbstractThe homeobox protein cut-like 1 (CUX1) comprises three isoforms and has been shown to be involved in the development of various types of malignancies. However, the expression and role of the CUX1 isoforms in glioma remain unclear. Herein, we first identified that P75CUX1 isoform exhibited consistent expression among three isoforms in glioma with specifically designed antibodies to identify all CUX1 isoforms. Moreover, a significantly higher expression of P75CUX1 was found in glioma compared with non-tumor brain (NB) tissues, analyzed with western blot and immunohistochemistry, and the expression level of P75CUX1 was positively associated with tumor grade. In addition, Kaplan–Meier survival analysis indicated that P75CUX1 could serve as an independent prognostic indicator to identify glioma patients with poor overall survival. Furthermore, CUX1 knockdown suppressed migration and invasion of glioma cells both in vitro and in vivo. Mechanistically, this study found that P75CUX1 regulated epithelial–mesenchymal transition (EMT) process mediated via β-catenin, and CUX1/β-catenin/EMT is a novel signaling cascade mediating the infiltration of glioma. Besides, CUX1 was verified to promote the progression of glioma via multiple other signaling pathways, such as Hippo and PI3K/AKT. In conclusion, we suggested that P75CUX1 could serve as a potential prognostic indicator as well as a novel treatment target in malignant glioma.


Sign in / Sign up

Export Citation Format

Share Document