scholarly journals Browning of white fat: does irisin play a role in humans?

2014 ◽  
Vol 222 (1) ◽  
pp. R25-R38 ◽  
Author(s):  
Manuela Elsen ◽  
Silja Raschke ◽  
Jürgen Eckel

The discovery of irisin as an exercise-regulated myokine inducing browning of WAT has gained interest as a potential new strategy to combat obesity and its associated disorders, such as type 2 diabetes. However, there are inconsistencies regarding the relevance of irisin in humans. The regulation of FNDC5 mRNA expression by exercise and contraction could not be reproduced by a number of human studies using several exercise protocols and in vitro approaches. Furthermore, the nature of FNDC5 fragments and the presence of irisin in humans are questionable and probably contribute to conflicting data obtained with commercially available ELISA kits. Most importantly, the information regarding the concentration of circulating irisin in humans is not clear, as different studies using different kits measure irisin levels in a wide range. Data about the role of irisin in states of human obesity and metabolic diseases are conflicting and, in some cases, changes in irisin levels have been observed; they were only moderate in 10–20%. Independent of the presence and regulation of FNDC5/irisin in humans, the application of recombinant irisin could still represent a therapeutic strategy to fight obesity. However, the current data obtained from human cell models reveal that FNDC5/irisin has no effect on browning of the major WAT depots in humans and is likely to selectively target a small subpopulation of adipocytes, which are located in classical BAT regions, such as the supraclavicular adipose tissue. Thus, other candidates, such as BMP7 or CNPs, seem to be more prominent candidates as inducers of browning in humans.

PPAR Research ◽  
2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
Angela Tesse ◽  
Ramaroson Andriantsitohaina ◽  
Thierry Ragot

Activation of peroxisome proliferator-activated receptors (PPARs), and particularly of PPARαand PPARγ, using selective agonists, is currently used in the treatment of metabolic diseases such as hypertriglyceridemia and type 2 diabetes mellitus. PPARαand PPARγanti-inflammatory, antiproliferative and antiangiogenic properties in cardiovascular cells were extensively clarified in a variety of in vitro and in vivo models. In contrast, the role of PPARδin cardiovascular system is poorly understood. Prostacyclin, the predominant prostanoid released by vascular cells, is a putative endogenous agonist for PPARδ, but only recently PPARδselective synthetic agonists were found, improving studies about the physiological and pathophysiological roles of PPARδactivation. Recent reports suggest that the PPARδactivation may play a pivotal role to regulate inflammation, apoptosis, and cell proliferation, suggesting that this transcriptional factor could become an interesting pharmacological target to regulate cardiovascular cell apoptosis, proliferation, inflammation, and metabolism.


Author(s):  
Ronja Fedders ◽  
Matthias Muenzner ◽  
Michael Schupp

AbstractNearly a decade of intense research has passed since the first report linking circulating retinol binding protein 4 (RBP4) to the development of insulin resistance. By now, a variety of underlying mechanisms have been identified; some of them are adherent to the canonical role of this circulating protein, which is to transport and deliver retinol to target tissues, and others that seem rather independent of retinol transport. Despite all these efforts, a consensus in the basic principles of RBP4’s metabolic effects has not been reached and some controversy remains. Using this as an opportunity, we here review and discuss current data on RBP4’s action on insulin sensitivity and its dependency on retinol homeostasis. We pay special attention to the involvement of RBP4 membrane receptors that were identified during these years, such as ‘stimulated by retinoic acid 6’ (STRA6), and whose identification added another layer of complexity to RBP4’s diverse actions. A better understanding of RBP4’s functions might allow its therapeutic exploitations, urgently needed in our period that is defined by an epidemic increase in metabolic diseases such as obesity and type 2 diabetes.


2009 ◽  
Vol 68 (4) ◽  
pp. 378-384 ◽  
Author(s):  
Henrike Sell ◽  
Jürgen Eckel

A strong causal link between increased adipose tissue mass and insulin resistance in tissues such as liver and skeletal muscle exists in obesity-related disorders such as type 2 diabetes. Increased adipose tissue mass in obese patients and patients with diabetes is associated with altered secretion of adipokines, which also includes chemotactic proteins. Adipose tissue releases a wide range of chemotactic proteins including many chemokines and chemerin, which are interesting targets for adipose tissue biology and for biomedical research in obesity and obesity-related diseases. This class of adipokines may be directly linked to a chronic state of low-grade inflammation and macrophage infiltration in adipose tissue, a concept intensively studied in adipose tissue biology in recent years. The inflammatory state of adipose tissue in obese patients may be the most important factor linking increased adipose tissue mass to insulin resistance. Furthermore, chemoattractant adipokines may play an important role in this situation, as many of these proteins possess biological activity beyond the recruitment of immune cells including effects on adipogenesis and glucose homeostasis in insulin-sensitive tissues. The present review provides a summary of experimental evidence of the role of adipose tissue-derived chemotactic cytokines and their function in insulin resistancein vivoandin vitro.


1992 ◽  
Vol 3 (4) ◽  
pp. 193-201 ◽  
Author(s):  
George G Zhanel ◽  
Daryl J Hoban ◽  
Godfrey KM Harding

Antimicrobial activity is not an ‘all or none’ effect. An increase in the rate and extent of antimicrobial action is usually observed over a wide range of antimicrobial concentrations. Subinhibitory antimicrobial concentrations are well known to produce significant antibacterial effects, and various antimicrobials at subinhibitory concentrations have been reported to inhibit the rate of bacterial growth. Bacterial virulence may be increased or decreased by subinhibitory antimicrobial concentrations by changes in the ability of bacteria to adhere to epithelial cells or by alterations in bacterial susceptibility to host immune defences. Animal studies performed in rats, hamsters and rabbits demonstrate decreased bacterial adherence, reduced infectivity and increased survival of animals treated with subinhibitory antimicrobial concentrations compared to untreated controls. The major future role of investigation of subinhibitory antimicrobial concentrations will be to define more fully, at a molecular level, how antimicrobials exert their antibacterial effects.


1993 ◽  
Vol 264 (2) ◽  
pp. C457-C463 ◽  
Author(s):  
I. Dorup ◽  
T. Clausen

In young rats fed a Mg(2+)-deficient diet for 3 wk, Mg2+ and K+ contents in soleus and extensor digitorum longus muscles were significantly reduced and closely correlated. In isolated soleus muscles, Mg2+ depletion induced an even more pronounced loss of K+, and Mg2+ and K+ contents were correlated over a wide range (r = 0.95, P < 0.001). Extracellular Mg2+ (0-1.2 mM) caused no change in total or ouabain-suppressible 86Rb influx. After long-term incubation in Ca(2+)-Mg(2+)-free buffer with EDTA and EGTA, cellular Mg2+ and K+ contents were reduced by 35 and 15%, respectively, without any reduction in ATP and total or ouabain-suppressible 86Rb influx. In Mg(2+)-depleted muscles 42K efflux was increased by up to 42%, and repletion with Mg2+ produced a graded decrease. We conclude that Mg2+ and K+ contents are closely correlated in muscles Mg2+ depleted in vivo or in vitro and that neither extracellular nor moderate intracellular Mg2+ depletion affects total or Na(+)-K+ pump-mediated K+ influx. The reduced K+ content may rather be related to increased K+ efflux from the muscles.


2021 ◽  
Vol 8 ◽  
Author(s):  
An Liu ◽  
Wenyuan Shi ◽  
Dongdong Lin ◽  
Haihui Ye

C-type allatostatins (C-type ASTs) are a family of structurally related neuropeptides found in a wide range of insects and crustaceans. To date, the C-type allatostatin receptor in crustaceans has not been deorphaned, and little is known about its physiological functions. In this study, we aimed to functionally define a C-type ASTs receptor in the mud crab, Scylla paramamosian. We showed that C-type ASTs receptor can be activated by ScypaAST-C peptide in a dose-independent manner and by ScypaAST-CCC peptide in a dose-dependent manner with an IC50 value of 6.683 nM. Subsequently, in vivo and in vitro experiments were performed to investigate the potential roles of ScypaAST-C and ScypaAST-CCC peptides in the regulation of ecdysone (20E) and methyl farnesoate (MF) biosynthesis. The results indicated that ScypaAST-C inhibited biosynthesis of 20E in the Y-organ, whereas ScypaAST-CCC had no effect on the production of 20E. In addition, qRT-PCR showed that both ScypaAST-C and ScypaAST-CCC significantly decreased the level of expression of the MF biosynthetic enzyme gene in the mandibular organ, suggesting that the two neuropeptides have a negative effect on the MF biosynthesis in mandibular organs. In conclusion, this study provided new insight into the physiological roles of AST-C in inhibiting ecdysone biosynthesis. Furthermore, it was revealed that AST-C family peptides might inhibit MF biosynthesis in crustaceans.


Nutrients ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 2831
Author(s):  
Philipp Ockermann ◽  
Laura Headley ◽  
Rosario Lizio ◽  
Jan Hansmann

The incidence of cardiovascular and metabolic diseases has increased over the last decades and is an important cause of death worldwide. An upcoming ingredient on the nutraceutical market are anthocyanins, a flavonoid subgroup, abundant mostly in berries and fruits. Epidemiological studies have suggested an association between anthocyanin intake and improved cardiovascular risk, type 2 diabetes and myocardial infarct. Clinical studies using anthocyanins have shown a significant decrease in inflammation markers and oxidative stress, a beneficial effect on vascular function and hyperlipidemia by decreasing low-density lipoprotein and increasing high-density lipoprotein. They have also shown a potential effect on glucose homeostasis and cognitive decline. This review summarizes the effects of anthocyanins in in-vitro, animal and human studies to give an overview of their application in medical prevention or as a dietary supplement.


2021 ◽  
Vol 11 (9) ◽  
pp. 544-549
Author(s):  
Paulina Trojanowska ◽  
Magdalena Chrościńska-Krawczyk ◽  
Alina Trojanowska ◽  
Ewa Tywanek ◽  
Jakub Wronecki ◽  
...  

Understanding the important role of the non-specific immune response in protecting the body against the development of numerous diseases has become partially possible after the discovery of several classes of pattern recognition receptors (PRR), such as Toll-like or NOD-like receptors. A group of cytoplasmic proteins called the inflammasome, which detect PAMP and DAMP through the PRR receptors, is able to activate pro-inflammatory cytokines and trigger an acute inflammatory reaction both in the extracellular and intracellular space. Low-grade systemic and local inflammation contributes to the development and progression of various conditions, including autoimmune and metabolic diseases, such as diabetes, metabolic syndrome and atherosclerosis, which until recently were not even considered inflammatory diseases. This review will discuss the role of innate immunity in the development of type 1 and type 2 diabetes, focusing on the role of specific innate immunity receptors and insulin resistance involved in these diseases pathogenesis.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Juan de Toro-Martín ◽  
Tamara Fernández-Marcelo ◽  
Águeda González-Rodríguez ◽  
Fernando Escrivá ◽  
Ángela M. Valverde ◽  
...  

Abstract Maternal malnutrition plays a critical role in the developmental programming of later metabolic diseases susceptibility in the offspring, such as obesity and type 2 diabetes. Because the liver is the major organ that produces and supplies blood glucose, we aimed at defining the potential role of liver glycogen autophagy in the programming of glucose metabolism disturbances. To this end, newborns were obtained from pregnant Wistar rats fed ad libitum with a standard diet or 65% food-restricted during the last week of gestation. We found that newborns from undernourished mothers showed markedly high basal insulin levels whereas those of glucagon were decreased. This unbalance led to activation of the mTORC1 pathway and inhibition of hepatic autophagy compromising the adequate handling of glycogen in the very early hours of extrauterine life. Restoration of autophagy with rapamycin but not with glucagon, indicated no defect in autophagy machinery per se, but in signals triggered by glucagon. Taken together, these results support the notion that hyperinsulinemia is an important mechanism by which mobilization of liver glycogen by autophagy is defective in food-restricted animals. This early alteration in the hormonal control of liver glycogen autophagy may influence the risk of developing metabolic diseases later in life.


2019 ◽  
Vol 74 (4) ◽  
pp. 313-321 ◽  
Author(s):  
Dan Yang ◽  
Yifan Yang ◽  
Yanlin Li ◽  
Rui Han

Background: Exercise therapy plays an important role in the prevention and treatment of type 2 diabetes (T2DM). The mechanism of exercise therapy in the improvement of glycolipid metabolism of T2DM is very complex and not completely clear. Summary: Exercise training improves the whole body metabolic health in patients with T2DM, leading to an increase in glycolipid uptake and utilization, improved insulin sensitivity, optimized body mass index, and modulated DNA methylation, etc. Recent findings support that some cytokines such as irisin, osteocalcin, and adiponectin are closely related to exercise and metabolic diseases. This study briefly reviews the physiological mechanisms of exercise therapy in diabetes and the potential role of these cytokines in exercise. Key Messages: More high-quality, targeted, randomized controlled studies are needed urgently, from mechanism study to treatment direction, to provide a more theoretical basis for exercise therapy and to explore new therapeutic targets for diabetes.


Sign in / Sign up

Export Citation Format

Share Document