scholarly journals Roles of poly (ADP-ribose) polymerase (PARP1) cleavage in the ovaries of fetal, neonatal, and adult pigs

Reproduction ◽  
2013 ◽  
Vol 146 (6) ◽  
pp. 593-602 ◽  
Author(s):  
Quanwei Wei ◽  
Wei Ding ◽  
Fangxiong Shi

Poly(ADP-ribosylation), which occurs rapidly in cells following DNA damage and is regulated by poly (ADP-ribose) polymerase 1 (PARP1), is a post-translational modification of proteins playing a crucial role in many processes, including DNA repair and cell death. Although PARP1 has recently been implicated in a variety of physiological and pathological processes, its role in the process of follicular development and atresia is not yet completely defined. This study was designed to investigate the cellular expression pattern and immunolocalization of PARP1, cleaved PARP1, caspase 3, and cleaved caspase 3 in fetal, neonatal, and adult porcine ovaries. Our results showed that in fetal and neonatal pigs, PARP1 cleavage is involved in the process of oocyte nest breakdown, primordial follicle formation, and transition to primary follicles. The results of immunohistochemistry indicated that PARP1 cleavage was involved in the process of follicular development and atresia, which was in accordance with our previous study; however, it was noted that cleaved caspase 3 was mainly localized in and around the nucleus of apoptotic granulosa cells (GCs), whereas cleaved PARP1 was mainly localized in the nucleus of the apoptotic GCs. RIA data showed increased serum progesterone and estradiol concentrations with age after birth. Collectively, our findings suggest that the PARP1 signaling pathway is involved in oocyte nest breakdown and primordial follicle formation in fetal and neonatal porcine ovaries, but is different from follicular atresia in adult porcine ovaries that involves cellular apoptosis.

2018 ◽  
Author(s):  
Pengju Zhang ◽  
Jun Wang ◽  
Hongyan Lang ◽  
Weixia Wang ◽  
Xiaohui Liu ◽  
...  

ABSTRACTMicroRNAs-205 (miR-205), were reportedly to be involved in various physiological and pathological processes, but its biological function in follicular atresia remain unknown. In this study, we investigated the expression of miR-205 in mouse granulosa cells (mGCs), and explored its functions in primary mGCs using a serial of in vitro experiments. The result of qRT-PCR demonstrated that miR-205 expression was significantly increased in early atretic follicles (EAF), and progressively atretic follicles (PAF) compared to healthy follicles (HF). Our results also revealed that overexpression of miR-205 in mGCs significantly promoted apoptosis, caspas-3/9 activities, and inhibited estrogen E2 release, and cytochrome P450 family 19 subfamily A polypeptide 1 (CYP19A1, a key gene in E2 production) expression. Bioinformatics and luciferase reporter assays revealed that the gene of cyclic AMP response element (CRE)-binding protein 1 (CREB1) was a potential target of miR-205. qRT-PCR and western blot assays revealed that overexpression of miR-205 inhibited the expression of CREB1 in mGCs. Importantly, CREB1 upregulation partially rescued the effects of miR-205 on apoptosis, caspase-3/9 activities, E2 production and CYP19A1 expression in mGCs. Our results indicate that miR-205 may play an important role in ovarian follicular development and provide new insights into follicular atresia.


2016 ◽  
Vol 28 (7) ◽  
pp. 1038 ◽  
Author(s):  
Monika Hułas-Stasiak ◽  
Piotr Dobrowolski ◽  
Ewa Tomaszewska

This study was designed to determine whether prenatal dexamethasone treatment has an effect on follicular development and atresia in the ovary of spiny mouse (Acomys cahirinus) offspring. Dexamethasone (125 µg kg–1 bodyweight per day) was administered to pregnant spiny mice from Day 20 of gestation to parturition. The processes of follicle loss were analysed using classical markers of apoptosis (terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling reaction, active caspase-3) and autophagy (Lamp1). The present study indicated that dexamethasone reduced the pool of healthy primordial follicles. Moreover, the oocytes from these follicles showed intensive caspase-3 and Lamp1 staining. Surprisingly, dexamethasone caused an increase in the number of secondary follicles; however, most of these follicles were characterised by extensive degeneration of the oocyte and caspase-3 and Lamp1 labelling. Western-blot analysis indicated that the glucocorticoid receptor as well as apoptosis and autophagy markers were more strongly expressed in the DEX-treated group than in the control. On the basis of these findings, we have concluded that dexamethasone impairs spiny mouse folliculogenesis and enhances follicular atresia through induction of autophagy or combined autophagy and apoptosis.


2017 ◽  
Vol 67 (1) ◽  
pp. 92-106
Author(s):  
Jelena Danilović Luković ◽  
Aleksandra Korać ◽  
Ivan Milošević ◽  
Tijana Lužajić ◽  
Zorana Milanović ◽  
...  

AbstractInduced prenatal hypothyroidism in rat pups leads to accelerated primordial follicle assembly and premature follicular atresia with ovary failure. This work investigates the influence of maternal hypothyroidism induced with 6-n-propyl-2-thyouracil (PTU) on the number and morphology of oogonia/oocytes in newborn rat pups with light and transmission electron microscopy. Expression of apoptosis and autophagy markers in oogonia/oocytes were examined using immunohistochemistry. Hypothyroid newborn pups had a decreased number of mitotic and resting oogonia, while the number of altered oogonia/oocytes was increased. Ultrastructural observations revealed the increased presence of degenerated pachytene oocytes (Z-cells) and oogonia/oocytes undergoing autophagy, apoptosis and combined apoptosis and autophagy, in this group. The most abundant altered oogonia/oocytes in the hypothyroid group were those with morphological features of advanced autophagy and Z-cells. The percentage of TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) positive oogonia/oocytes was significantly lower in the hypothyroid group. No significant difference was recorded in the expression of caspase-3, ATG7 and LC3 possibly reflecting that these proteins were not involved in the oogonia/oocyte alteration process during prenatal rat hypothyroidism. The obtained results indicate that developmental hypothyroidism in the offspring enhances the number of Z-cells and oogonia/oocytes altered with the advanced process of autophagy.


2020 ◽  
Vol 20 (4) ◽  
pp. 504-517
Author(s):  
Yu-Lan Li ◽  
Xin-Li Gan ◽  
Rong-Ping Zhu ◽  
Xuehong Wang ◽  
Duan-Fang Liao ◽  
...  

Objective: To overcome the disadvantages of cisplatin, numerous platinum (Pt) complexes have been prepared. However, the anticancer activity and mechanism of Pt(II) complexed with 2-benzoylpyridine [Pt(II)- Bpy]: [PtCl2(DMSO)L] (DMSO = dimethyl sulfoxide, L = 2-benzoylpyridine) in cancer cells remain unknown. Methods: Pt(II)-Bpy was synthesized and characterized by spectrum analysis. Its anticancer activity and underlying mechanisms were demonstrated at the cellular, molecular, and in vivo levels. Results: Pt(II)-Bpy inhibited tumor cell growth, especially HepG2 human liver cancer cells, with a halfmaximal inhibitory concentration of 9.8±0.5μM, but with low toxicity in HL-7702 normal liver cells. Pt(II)- Bpy induced DNA damage, which was demonstrated through a marked increase in the expression of cleavedpoly (ADP ribose) polymerase (PARP) and gamma-H2A histone family member X and a decrease in PARP expression. The interaction of Pt(II)-Bpy with DNA at the molecular level was most likely through an intercalation mechanism, which might be evidence of DNA damage. Pt(II)-Bpy initiated cell cycle arrest at the S phase in HepG2 cells. It also caused severe loss of the mitochondrial membrane potential; a decrease in the expression of caspase-9 and caspase-3; an increase in reactive oxygen species levels; the release of cytochrome c and apoptotic protease activation factor; and the activation of caspase-9 and caspase-3 in HepG2 cells, which in turn resulted in apoptosis. Meanwhile, changes in p53 and related proteins were observed including the upregulation of p53, the phosphorylation of p53, p21, B-cell lymphoma-2-associated X protein, and NOXA; and the downregulation of B-cell lymphoma 2. Moreover, Pt(II)-Bpy displayed marked inhibitory effects on tumor growth in the HepG2 nude mouse model. Conclusion: Pt(II)-Bpy is a potential candidate for cancer chemotherapy.


1999 ◽  
Vol 19 (9) ◽  
pp. 6076-6084 ◽  
Author(s):  
Graeme C. M. Smith ◽  
Fabrizio d’adda di Fagagna ◽  
Nicholas D. Lakin ◽  
Stephen P. Jackson

ABSTRACT The activation of the cysteine proteases with aspartate specificity, termed caspases, is of fundamental importance for the execution of programmed cell death. These proteases are highly specific in their action and activate or inhibit a variety of key protein molecules in the cell. Here, we study the effect of apoptosis on the integrity of two proteins that have critical roles in DNA damage signalling, cell cycle checkpoint controls, and genome maintenance—the product of the gene defective in ataxia telangiectasia, ATM, and the related protein ATR. We find that ATM but not ATR is specifically cleaved in cells induced to undergo apoptosis by a variety of stimuli. We establish that ATM cleavage in vivo is dependent on caspases, reveal that ATM is an efficient substrate for caspase 3 but not caspase 6 in vitro, and show that the in vitro caspase 3 cleavage pattern mirrors that in cells undergoing apoptosis. Strikingly, apoptotic cleavage of ATM in vivo abrogates its protein kinase activity against p53 but has no apparent effect on the DNA binding properties of ATM. These data suggest that the cleavage of ATM during apoptosis generates a kinase-inactive protein that acts, through its DNA binding ability, in a trans-dominant-negative fashion to prevent DNA repair and DNA damage signalling.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Tyler Bammert ◽  
Jamie Hijmans ◽  
Whitney Reiakvam ◽  
Ma’ayan Levy ◽  
Kelly Stockelman ◽  
...  

Clinical interest in endothelial cell-derived microparticles (EMPs) has increased due to their role in the pathogenesis of vascular disease. Although released by the endothelium, EMPs have autocrine properties that can significantly impact endovascular health. Hyperglycemic conditions, such as diabetes, are known to stimulate EMP release; however, the effects of these glucose-related microparticles on endothelial cell function are not well understood. High glucose concentrations induce endothelial cell apoptosis through a caspase-3-dependent mechanism. The aim of this study was to determine the effect of EMPs derived from a hyperglycemic condition on endothelial cell susceptibility to apoptosis. Human umbilical vein endothelial cells (HUVECs) were cultured (3 rd passage) and plated in 6-well plates at a density of 5.0 x 10 5 cell/condition. Cells were incubated with RPMI 1640 media containing 25mM D-glucose (concentration representing a diabetic glycemic state) or 5mM D-glucose (control, normoglycemic, condition) for 48 h to generate EMPs. EMPs derived from both conditions were pelleted by centrifugation and resuspended in culture media. EMP identification (CD144 + expression) and number was determined by flow cytometry. HUVECs (2 x10 6 cells/condition) were treated with EMPs (2:1 ratio) generated from either the hyperglycemic or normoglycemic conditions for 24 h. Thereafter, cells were treated with staurosporine (1μmol/L) for 3 h at 37°C and biotin-ZVKD-fmk inhibitor for 1 h at 37°C. Intracellular concentration of active caspase-3 was determined by enzyme immune assay. Cellular expression of miR-Let7a, an anti-apoptotic microRNA, was determined by RT-PCR using the ΔΔCT normalized to RNU6. Hyperglycemic EMPs resulted in significant increase in basal (1.5 + 0.1 vs 1.0 + 0.1 ng/mL) and staurosporine-stimulated (2.2 + 0.2 vs 1.4 + 0.1 ng/mL) caspase-3 activity compared with normoglycemic EMPs. Additional, the expression of miR-Let7a was markedly reduced (~140%) in response to hyperglycemic EMPs (0.43 + 0.17 fold vs control). These results demonstrate that hyperglycemic-induced EMPs increase endothelial cell apoptotic susceptibility. This apoptotic effect may be mediated, at least in part, by a reduction in miR-Let7a expression.


Animals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1003 ◽  
Author(s):  
Shimaa A. Amer ◽  
Ali Osman ◽  
Naif A. Al-Gabri ◽  
Shafika A. M. Elsayed ◽  
Ghada I. Abd El-Rahman ◽  
...  

The present study was conducted to assess the effect of replacing fish meal with whey protein concentrate (WPC) on the growth performance, histopathological condition of organs, economic efficiency, disease resistance to intraperitoneal inoculation of Aeromonas hydrophila, and the immune response of Oreochromis niloticus. The toxicity of WPC was tested by measuring the activity of caspase 3 as an indicator of cellular apoptosis. Oreochromis niloticus fingerlings with average initial weight 18.65 ± 0.05 gm/fish (n = 225) for a 10-week feeding trial. The fish were randomly allocated to five experimental groups, having five replacement percentages of fish meal with WPC: 0%, 13.8%, 27.7%, 41.6%, and 55.5% (WPC0, WPC13.8, WPC27.7, WPC41.6, and WPC55.5); zero percentage represented the control group. The results show that the fish fed WPC had the same growth performance as the WPC0. The total weight of bacterially challenged surviving fish increased linearly and quadratically (p ≤ 0.05) by increasing the replacement percentage of fish meal with WPC. The growth hormone, nitric oxide, IgM, complement 3, and lysozyme activity were seen to increase significantly in WPC27.7, especially after a bacterial challenge. The phagocytic percentage and phagocytic index increased significantly in WPC27.7, WPC41.6, and WPC55.5 groups. Histopathological examination of liver sections was badly affected by high replacement in WPC41.6–55.5. The activity of caspase 3 in the immunohistochemical stained sections of the intestine was increased significantly by increasing the inclusion level of WPC. Economically, the total return of the total surviving fish after the bacterial challenge was increased significantly by fish meal replacement with WPC. It could be concluded that WPC could replace the fish meal in Nile tilapia diets up to 27.7%, with improving the gut health, the total weight of survival fish, and immune status of fish challenged with A. hydrophila. High inclusion levels of WPC are not recommended in fish diets, since they negatively affected the intestinal and liver tissues and increased the level of cellular apoptosis, as indicated by the increased caspase 3 activity. Further researches are recommended to evaluate the effect of fish meal replacement with WPC on the histopathological examination of the kidney and to test the capacity of serum IgM to clot the bacteria used for the challenge.


Development ◽  
2001 ◽  
Vol 128 (1) ◽  
pp. 137-146
Author(s):  
C. D'Sa-Eipper ◽  
J.R. Leonard ◽  
G. Putcha ◽  
T.S. Zheng ◽  
R.A. Flavell ◽  
...  

Programmed cell death (apoptosis) is critical for normal brain morphogenesis and may be triggered by neurotrophic factor deprivation or irreparable DNA damage. Members of the Bcl2 and caspase families regulate neuronal responsiveness to trophic factor withdrawal; however, their involvement in DNA damage-induced neuronal apoptosis is less clear. To define the molecular pathway regulating DNA damage-induced neural precursor cell apoptosis, we have examined the effects of drug and gamma-irradiation-induced DNA damage on telencephalic neural precursor cells derived from wild-type embryos and mice with targeted disruptions of apoptosis-associated genes. We found that DNA damage-induced neural precursor cell apoptosis, both in vitro and in vivo, was critically dependent on p53 and caspase 9, but neither Bax nor caspase 3 expression. Neural precursor cell apoptosis was also unaffected by targeted disruptions of Bclx and Bcl2, and unlike neurotrophic factor-deprivation-induced neuronal apoptosis, was not associated with a detectable loss of cytochrome c from mitochondria. The apoptotic pathway regulating DNA damage-induced neural precursor cell death is different from that required for normal brain morphogenesis, which involves both caspase 9 and caspase 3 but not p53, indicating that additional apoptotic stimuli regulate neural precursor cell numbers during telencephalic development.


2019 ◽  
Vol 102 (2) ◽  
pp. 511-520
Author(s):  
Yanrong Kuai ◽  
Xiaobo Gao ◽  
Huixia Yang ◽  
Haiyan Luo ◽  
Yang Xu ◽  
...  

Abstract Pentachloronitrobenzene (PCNB) is an organochlorine fungicide widely used for crop production and has become an environmental concern. Little is known about the effect of PCNB on ovarian steroidogenesis and follicular development. We found that PCNB stimulated Star expression and progesterone production in cultured rat granulosa cells in a dose-dependent manner. PCNB activated mitogen-activated protein kinase (MAPK3/1) extracellulat regulated kinase (ERK1/2), thus inhibition of either protein kinase A (PKA) or MAPK3/1 signaling pathway significantly attenuated progesterone biosynthesis caused by PCNB, suggesting that PCNB induced progesterone production by activating the cyclic adenosine monophosphate (cAMP/PKA) and MAPK3/1 signaling pathways. Further investigation demonstrated that PCNB induced Star expression and altered MAPK3/1 signaling in ovary tissues of immature SD rats treated with PCNB at the dose of 100, 200, or 300 mg/kg by daily gavage for 7 days, while serum progesterone level was dose-dependently decreased. We demonstrated that PCNB exposure accelerated the recruitment of primordial follicles into the growing follicle pool in ovary tissues, accompanied by increased levels of anti-Mullerian hormone (AMH) in both ovary tissues and serum. Taken together, our data demonstrate for the first time that PCNB stimulated Star expression, altered MAPK3/1 signaling and progesterone production in vivo and in vitro, and accelerated follicular development with a concomitant increase in AMH in ovary tissues and serum. Our findings provide novel insight into the toxicity of PCNB to animal ovary function.


Sign in / Sign up

Export Citation Format

Share Document