scholarly journals Genomic Variant Analyses in Pyrethroid Resistant and Susceptible Malaria Vector, Anopheles sinensis

2020 ◽  
Vol 10 (7) ◽  
pp. 2185-2193
Author(s):  
Xuelian Chang ◽  
Daibin Zhong ◽  
Xiaoming Wang ◽  
Mariangela Bonizzoni ◽  
Yiji Li ◽  
...  

Anopheles sinensis is a major malaria vector in Southeast Asia. Resistance to pyrethroid insecticides in this species has impeded malaria control in the region. Previous studies found that An. sinensis populations from Yunnan Province, China were highly resistant to deltamethrin and did not carry mutations in the voltage-gated sodium channel gene that cause knockdown resistance. In this study, we tested the hypothesis that other genomic variants are associated with the resistance phenotype. Using paired-end whole genome sequencing (DNA-seq), we generated 108 Gb of DNA sequence from deltamethrin -resistant and -susceptible mosquito pools with an average coverage of 83.3× depth. Using a stringent filtering method, we identified a total of 916,926 single nucleotide variants (SNVs), including 32,240 non-synonymous mutations. A total of 958 SNVs differed significantly in allele frequency between deltamethrin -resistant and -susceptible mosquitoes. Of these, 43 SNVs were present within 37 genes that code for immunity, detoxification, cuticular, and odorant proteins. A subset of 12 SNVs were randomly selected for genotyping of individual mosquitoes by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and showed consistent allele frequencies with the pooled DNA-seq derived allele frequencies. In addition, copy number variations (CNVs) were detected in 56 genes, including 33 that contained amplification alleles and 23 that contained deletion alleles in resistant mosquitoes compared to susceptible mosquitoes. The genomic variants described here provide a useful resource for future studies on the genetic mechanism of insecticide resistance in this important malaria vector species.

2021 ◽  
Vol 11 (1) ◽  
pp. 33
Author(s):  
Nayoung Han ◽  
Jung Mi Oh ◽  
In-Wha Kim

For predicting phenotypes and executing precision medicine, combination analysis of single nucleotide variants (SNVs) genotyping with copy number variations (CNVs) is required. The aim of this study was to discover SNVs or common copy CNVs and examine the combined frequencies of SNVs and CNVs in pharmacogenes using the Korean genome and epidemiology study (KoGES), a consortium project. The genotypes (N = 72,299) and CNV data (N = 1000) were provided by the Korean National Institute of Health, Korea Centers for Disease Control and Prevention. The allele frequencies of SNVs, CNVs, and combined SNVs with CNVs were calculated and haplotype analysis was performed. CYP2D6 rs1065852 (c.100C>T, p.P34S) was the most common variant allele (48.23%). A total of 8454 haplotype blocks in 18 pharmacogenes were estimated. DMD ranked the highest in frequency for gene gain (64.52%), while TPMT ranked the highest in frequency for gene loss (51.80%). Copy number gain of CYP4F2 was observed in 22 subjects; 13 of those subjects were carriers with CYP4F2*3 gain. In the case of TPMT, approximately one-half of the participants (N = 308) had loss of the TPMT*1*1 diplotype. The frequencies of SNVs and CNVs in pharmacogenes were determined using the Korean cohort-based genome-wide association study.


Author(s):  
Pauline Arnaud ◽  
Hélène Morel ◽  
Olivier Milleron ◽  
Laurent Gouya ◽  
Christine Francannet ◽  
...  

Abstract Purpose Individuals with mosaic pathogenic variants in the FBN1 gene are mainly described in the course of familial screening. In the literature, almost all these mosaic individuals are asymptomatic. In this study, we report the experience of our team on more than 5,000 Marfan syndrome (MFS) probands. Methods Next-generation sequencing (NGS) capture technology allowed us to identify five cases of MFS probands who harbored a mosaic pathogenic variant in the FBN1 gene. Results These five sporadic mosaic probands displayed classical features usually seen in Marfan syndrome. Combined with the results of the literature, these rare findings concerned both single-nucleotide variants and copy-number variations. Conclusion This underestimated finding should not be overlooked in the molecular diagnosis of MFS patients and warrants an adaptation of the parameters used in bioinformatics analyses. The five present cases of symptomatic MFS probands harboring a mosaic FBN1 pathogenic variant reinforce the fact that apparently asymptomatic mosaic parents should have a complete clinical examination and a regular cardiovascular follow-up. We advise that individuals with a typical MFS for whom no single-nucleotide pathogenic variant or exon deletion/duplication was identified should be tested by NGS capture panel with an adapted variant calling analysis.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1879
Author(s):  
Marcello Scala ◽  
Irene Schiavetti ◽  
Francesca Madia ◽  
Cristina Chelleri ◽  
Gianluca Piccolo ◽  
...  

Neurofibromatosis type 1 (NF1) is a proteiform genetic condition caused by pathogenic variants in NF1 and characterized by a heterogeneous phenotypic presentation. Relevant genotype–phenotype correlations have recently emerged, but only few pertinent studies are available. We retrospectively reviewed clinical, instrumental, and genetic data from a cohort of 583 individuals meeting at least 1 diagnostic National Institutes of Health (NIH) criterion for NF1. Of these, 365 subjects fulfilled ≥2 NIH criteria, including 235 pediatric patients. Genetic testing was performed through cDNA-based sequencing, Next Generation Sequencing (NGS), and Multiplex Ligation-dependent Probe Amplification (MLPA). Uni- and multivariate statistical analysis was used to investigate genotype–phenotype correlations. Among patients fulfilling ≥ 2 NIH criteria, causative single nucleotide variants (SNVs) and copy number variations (CNVs) were detected in 267/365 (73.2%) and 20/365 (5.5%) cases. Missense variants negatively correlated with neurofibromas (p = 0.005). Skeletal abnormalities were associated with whole gene deletions (p = 0.05) and frameshift variants (p = 0.006). The c.3721C>T; p.(R1241*) variant positively correlated with structural brain alterations (p = 0.031), whereas Lisch nodules (p = 0.05) and endocrinological disorders (p = 0.043) were associated with the c.6855C>A; p.(Y2285*) variant. We identified novel NF1 genotype–phenotype correlations and provided an overview of known associations, supporting their potential relevance in the implementation of patient management.


2015 ◽  
Vol 112 (19) ◽  
pp. 6176-6181 ◽  
Author(s):  
Olga Varea ◽  
Maria Dolores Martin-de-Saavedra ◽  
Katherine J. Kopeikina ◽  
Britta Schürmann ◽  
Hunter J. Fleming ◽  
...  

Central glutamatergic synapses and the molecular pathways that control them are emerging as common substrates in the pathogenesis of mental disorders. Genetic variation in the contactin associated protein-like 2 (CNTNAP2) gene, including copy number variations, exon deletions, truncations, single nucleotide variants, and polymorphisms have been associated with intellectual disability, epilepsy, schizophrenia, language disorders, and autism. CNTNAP2, encoded by Cntnap2, is required for dendritic spine development and its absence causes disease-related phenotypes in mice. However, the mechanisms whereby CNTNAP2 regulates glutamatergic synapses are not known, and cellular phenotypes have not been investigated in Cntnap2 knockout neurons. Here we show that CNTNAP2 is present in dendritic spines, as well as axons and soma. Structured illumination superresolution microscopy reveals closer proximity to excitatory, rather than inhibitory synaptic markers. CNTNAP2 does not promote the formation of synapses and cultured neurons from Cntnap2 knockout mice do not show early defects in axon and dendrite outgrowth, suggesting that CNTNAP2 is not required at this stage. However, mature neurons from knockout mice show reduced spine density and levels of GluA1 subunits of AMPA receptors in spines. Unexpectedly, knockout neurons show large cytoplasmic aggregates of GluA1. Here we characterize, for the first time to our knowledge, synaptic phenotypes in Cntnap2 knockout neurons and reveal a novel role for CNTNAP2 in GluA1 trafficking. Taken together, our findings provide insight into the biological roles of CNTNAP2 and into the pathogenesis of CNTNAP2-associated neuropsychiatric disorders.


2021 ◽  
Vol 11 (8) ◽  
pp. 804
Author(s):  
Navid Neyshaburinezhad ◽  
Hengameh Ghasim ◽  
Mohammadreza Rouini ◽  
Youssef Daali ◽  
Yalda H. Ardakani

Genetic polymorphisms in cytochrome P450 genes can cause alteration in metabolic activity of clinically important medicines. Thus, single nucleotide variants (SNVs) and copy number variations (CNVs) in CYP genes are leading factors of drug pharmacokinetics and toxicity and form pharmacogenetics biomarkers for drug dosing, efficacy, and safety. The distribution of cytochrome P450 alleles differs significantly between populations with important implications for personalized drug therapy and healthcare programs. To provide a meta-analysis of CYP allele polymorphisms with clinical importance, we brought together whole-genome and exome sequencing data from 800 unrelated individuals of Iranian population (100 subjects from 8 major ethnics of Iran) and 63,269 unrelated individuals of five major human populations (EUR, AMR, AFR, EAS and SAS). By integrating these datasets with population-specific linkage information, we evolved the frequencies of 140 CYP haplotypes related to 9 important CYP450 isoenzymes (CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4 and CYP3A5) giving a large resource for major genetic determinants of drug metabolism. Furthermore, we evaluated the more frequent Iranian alleles and compared the dataset with the Caucasian race. Finally, the similarity of the Iranian population SNVs with other populations was investigated.


2014 ◽  
Author(s):  
Unentsatsral Lkhagvasuren ◽  
Sarantuya Jav ◽  
Ochbadrakh Batjargal ◽  
Myagmarsuren Batsukh

In this study, we have investigated the association between osteoporosis and estrogen receptor 1 (ER1) 397 T>C, and calcitonin receptor (CALCR) 1340 T>C polymorphisms. Genomic DNA was obtained from 104 persons (52 osteoporotic and 52 healthy controls). Genomic DNA was extracted from EDTA-preserved peripheral venous blood of patients and controls and analyzed by PCR-RFLP. As a result, there was no statistically significant difference in the genotype and allele frequencies of patients and controls for ER1 397 T>C and CALCR 1340 T>C polymorphisms. ER1 CC and TC single nucleotides genotypes compared with TT genotypes was found more significantly women with osteoporosis [p=0.016; p=0.0046, OR=2.66; 0.44, 95% CI 1.185-5.988; 0.199-0.991)]. There was no statistically significant difference in the genotype and allele frequencies of patient and controls for ER1 combined nucleotides [p=0,148, OR=1.051, 95% CI (0.993–1.112)]. Our study showed that CALCR genes single and combined nucleotides genotypes were not significant women with osteoporotic and healthy postmenopausal women.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 4585-4585
Author(s):  
Bassel Nazha ◽  
Hiba I. Dada ◽  
Leylah Drusbosky ◽  
Jacqueline T Brown ◽  
Deepak Ravindranathan ◽  
...  

4585 Background: Adrenocortical Carcinoma (ACC) is a rare and aggressive malignancy with poor prognosis and limited treatments in the advanced setting. Molecular pathways with tumor suppressor genes (e.g. TP53, CDKN2A) and oncogenes (e.g. CTNNB1 and RAS) are implicated in oncogenesis. To our knowledge, the genomic landscape of ctDNA alterations for ACC has not been described in a large cohort. We report plasma-based ctDNA alterations in patients with advanced ACC. Methods: We retrospectively evaluated genomic data from 102 patients with ACC who had ctDNA testing between 12/2016 – 10/2020 using Guardant360 (Guardant Health, CA). ctDNA analysis interrogated single nucleotide variants (SNV), fusions, indels and copy number variations (CNV) of up to 83 genes. We evaluated the frequency of genomic alterations, the landscape of co-occurring mutations, and pathogenic or likely pathogenic alterations with potential targeted therapies. The prevalence of alterations identified in ctDNA were compared to those detected in tissue using a publicly available database (cBioPortal). Results: The median age was 54 years (range 24-81), and 55% of patients were male. Among the entire cohort, 84 pts (82.4%) had ≥1 somatic alteration detected. Mutations were most frequently detected in TP53 (52%), EGFR (23%), CTNNB1 (18%), MET (18%), and ATM (14%). The frequencies detected in ctDNA were similar to the results detected in tissue. Pathogenic and/or likely pathogenic mutations in therapeutically relevant alterations were observed in 36 patients (35%), including EGFR, BRAF, MET, CDKN2A, and CDK4/6 (Table 1). The most frequently co-occurring mutations were EGFR + TP53 (14%), EGFR + MET (11%), BRAF + MET (10%). Conclusions: Blood-based ctDNA profiling in advanced ACC provided comprehensive genomic data in most patients, with a similar profile to tumor tissue analyses. Over one third of patients had actionable mutations with approved therapies in other cancers. This approach might inform the development of personalized treatment options for this aggressive malignancy.[Table: see text]


Genes ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 715 ◽  
Author(s):  
Sugiyama ◽  
Moteki ◽  
Kitajiri ◽  
Kitano ◽  
Nishio ◽  
...  

The OTOA gene (Locus: DFNB22) is reported to be one of the causative genes for non-syndromic autosomal recessive hearing loss. The copy number variations (CNVs) identified in this gene are also known to cause hearing loss, but have not been identified in Japanese patients with hearing loss. Furthermore, the clinical features of OTOA-associated hearing loss have not yet been clarified. In this study, we performed CNV analyses of a large Japanese hearing loss cohort, and identified CNVs in 234 of 2262 (10.3%, 234/2262) patients with autosomal recessive hearing loss. Among the identified CNVs, OTOA gene-related CNVs were the second most frequent (0.6%, 14/2262). Among the 14 cases, 2 individuals carried OTOA homozygous deletions, 4 carried heterozygous deletions with single nucleotide variants (SNVs) in another allele. Additionally, 1 individual with homozygous SNVs in the OTOA gene was also identified. Finally, we identified 7 probands with OTOA-associated hearing loss, so that its prevalence in Japanese patients with autosomal recessive hearing loss was calculated to be 0.3% (7/2262). As novel clinical features identified in this study, the audiometric configurations of patients with OTOA-associated hearing loss were found to be mid-frequency. This is the first study focused on the detailed clinical features of hearing loss caused by this gene mutation and/or gene deletion.


Genes ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 354 ◽  
Author(s):  
Jeong Yong Lee ◽  
Jung Oh Kim ◽  
Han Sung Park ◽  
Chang Soo Ryu ◽  
Ji Hyang Kim ◽  
...  

Recurrent pregnancy loss (RPL), which is defined as two pregnancy losses that occur before 20 weeks of gestation, is relatively common, occurring in approximately 1–5% of women. The underlying cause is often unclear, although numerous factors may contribute to RPL, including environmental and immunological factors, blood coagulation disorders, and genetics. In particular, single nucleotide variants have been associated with RPL, including those found in microRNAs (miRNAs). We investigated the association between four miRNA polymorphisms, miR-25T>C, miR-32C>A, miR-125aC>T, and miR-222G>T, and RPL in a cohort consisting of 361 RPL patients and 272 controls. Subjects were genotyped at miRNA loci by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis, and genotype frequencies were calculated. We then performed allele and genotype combination analyses and measured the association between miRNA polymorphisms and clinical variables in both RPL patients and controls. We detected a statistically significant association between RPL and the miR-25T/miR-32C/miR-125aT/miR-222T allele combination (adjusted odds ratio (AOR), 4.361; 95% confidence interval (CI), 1.496–12.72; P = 0.003). Three-gene combinations, including miR-32C/miR-125aT/miR-222T (AOR, 3.085; 95% CI, 1.254–7.588; P = 0.010) and miR-25T/miR-125aT/miR-222T (AOR, 2.929; 95% CI, 1.183–7.257; P = 0.015), and the two-gene combination miR-125aT/miR-222T (AOR, 2.417; 95% CI, 1.084–5.386; P = 0.026) were also associated with RPL. Analysis of variance (ANOVA) revealed that platelet counts and blood urea nitrogen levels were significantly different in RPL patients expressing different miR-125aC>T and miR-25T>C genotypes, respectively (P < 0.05). In addition, creatinine levels were lower in RPL patients expressing the minor alleles miR-25T>C and miR-32C>A. We investigated miRNAs (miR-25, miR-32, miR-125a, miR-222) in RPL patients and healthy controls. Significantly different allele frequencies were detected by ANOVA. We suggest that miRNAs and clinical factors can impact RPL occurrence.


Sign in / Sign up

Export Citation Format

Share Document