scholarly journals An ecofeminist perspective on new food technologies

Author(s):  
Angela Lee

New food technologies are touted by some to be an indispensable part of the toolkit when it comes to feeding a growing population, especially when factoring in the growing appetite for animal products. To this end, technologies like genetically engineered (GE) animals and in vitro meat are currently in various stages of research and development, with proponents claiming a myriad of justificatory benefits. However, it is important to consider not only the technical attributes and promissory possibilities of these technologies, but also the worldviews that are being imported in turn, as well as the unanticipated social and environmental consequences that could result. In addition to critiquing dominant paradigms, the inclusive, intersectional ecofeminist perspective presented here offers a different way of thinking about new food technologies, with the aim of exposing inherent biases, rejecting a view of institutions like science and law as being objective, and advancing methods and rationales for a more explicitly ethical form of decision-making. Alternative and marginalized perspectives are especially valuable in this context, because careful reflection on the range of concerns implicated by new food technologies is necessary in order to better evaluate whether or not they can contribute to the building of a more sustainable and just food system for all.

Author(s):  
Bob Fischer

What can be said in favor of consuming animal products? This chapter surveys the options, with special focus on attempts to exploit pro-vegan principles for anti-vegan ends. Utilitarian, rights-based, contractualist, and agrarian proposals are explored, as well as some recent arguments that attempt to revive a form of speciesism. Ultimately, the chapter considers how such arguments might inform a broad case for consuming animal products—that is, one that might earn respect from those in a variety of moral camps—and it suggests that there may be good reasons to eat roadkill, bugs, bivalves, in vitro meat, animal products that will be wasted, and the bodies and byproducts of animals that live full, pleasant lives.


2019 ◽  
Vol 3 (6) ◽  
pp. 753-758
Author(s):  
Silvia Woll

Innovators of in vitro meat (IVM) are convinced that this approach is the solution for problems related to current meat production and consumption, especially regarding animal welfare and environmental issues. However, the production conditions have yet to be fully clarified and there is still a lack of ethical discourses and critical debates on IVM. In consequence, discussion about the ethical justifiability and desirability of IVM remains hypothetical and we have to question those promises. This paper addresses the complex ethical aspects associated with IVM and the questions of whether, and under what conditions, the production of IVM represents an ethically justifiable solution for existing problems, especially in view of animal welfare, the environment, and society. There are particular hopes regarding the benefits that IVM could bring to animal welfare and the environment, but there are also strong doubts about their ethical benefits.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 557d-557
Author(s):  
Jennifer Warr ◽  
Fenny Dane ◽  
Bob Ebel

C6 volatile compounds are known to be produced by the plant upon pathogen attack or other stress-related events. The biological activity of many of these substances is poorly understood, but some might produce signal molecules important in host–pathogen interactions. In this research we explored the possibility that lipid-derived C6 volatiles have a direct effect on bacterial plant pathogens. To this purpose we used a unique tool, a bacterium genetically engineered to bioluminesce. Light-producing genes from a fish-associated bacterium were introduced into Xanthomonas campestris pv. campestris, enabling nondestructive detection of bacteria in vitro and in the plant with special computer-assisted camera equipment. The effects of different C6 volatiles (trans-2 hexanal, trans-2 hexen-1-ol and cis-3 hexenol) on growth of bioluminescent Xanthomonas campestris were investigated. Different volatile concentrations were used. Treatment with trans-2 hexanal appeared bactericidal at low concentrations (1% and 10%), while treatments with the other volatiles were not inhibitive to bacterial growth. The implications of these results with respect to practical use of trans-2 hexanal in pathogen susceptible and resistant plants will be discussed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chao Ma ◽  
Jing Sun ◽  
Bo Li ◽  
Yang Feng ◽  
Yao Sun ◽  
...  

AbstractThe development of biomedical glues is an important, yet challenging task as seemingly mutually exclusive properties need to be combined in one material, i.e. strong adhesion and adaption to remodeling processes in healing tissue. Here, we report a biocompatible and biodegradable protein-based adhesive with high adhesion strengths. The maximum strength reaches 16.5 ± 2.2 MPa on hard substrates, which is comparable to that of commercial cyanoacrylate superglue and higher than other protein-based adhesives by at least one order of magnitude. Moreover, the strong adhesion on soft tissues qualifies the adhesive as biomedical glue outperforming some commercial products. Robust mechanical properties are realized without covalent bond formation during the adhesion process. A complex consisting of cationic supercharged polypeptides and anionic aromatic surfactants with lysine to surfactant molar ratio of 1:0.9 is driven by multiple supramolecular interactions enabling such strong adhesion. We demonstrate the glue’s robust performance in vitro and in vivo for cosmetic and hemostasis applications and accelerated wound healing by comparison to surgical wound closures.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yasaman Shamshirgaran ◽  
Anna Jonebring ◽  
Anna Svensson ◽  
Isabelle Leefa ◽  
Mohammad Bohlooly-Y ◽  
...  

AbstractRecent advances in induced pluripotent stem cells (iPSCs), genome editing technologies and 3D organoid model systems highlight opportunities to develop new in vitro human disease models to serve drug discovery programs. An ideal disease model would accurately recapitulate the relevant disease phenotype and provide a scalable platform for drug and genetic screening studies. Kidney organoids offer a high cellular complexity that may provide greater insights than conventional single-cell type cell culture models. However, genetic manipulation of the kidney organoids requires prior generation of genetically modified clonal lines, which is a time and labor consuming procedure. Here, we present a methodology for direct differentiation of the CRISPR-targeted cell pools, using a doxycycline-inducible Cas9 expressing hiPSC line for high efficiency editing to eliminate the laborious clonal line generation steps. We demonstrate the versatile use of genetically engineered kidney organoids by targeting the autosomal dominant polycystic kidney disease (ADPKD) genes: PKD1 and PKD2. Direct differentiation of the respective knockout pool populations into kidney organoids resulted in the formation of cyst-like structures in the tubular compartment. Our findings demonstrated that we can achieve > 80% editing efficiency in the iPSC pool population which resulted in a reliable 3D organoid model of ADPKD. The described methodology may provide a platform for rapid target validation in the context of disease modeling.


2021 ◽  
pp. 1-3
Author(s):  
Joreintje Dingena Mackenbach

Abstract I reflect upon the potential reasons why American low-income households do not spend an optimal proportion of their food budgets on fruits and vegetables, even though this would allow them to meet the recommended levels of fruit and vegetable consumption. Other priorities than health, automatic decision-making processes and access to healthy foods play a role, but solutions for the persistent socio-economic inequalities in diet should be sought in the wider food system which promotes cheap, mass-produced foods. I argue that, ultimately, healthy eating is not a matter of prioritisation by individual households but by policymakers.


2021 ◽  
pp. 110662
Author(s):  
Aldonza Jaques ◽  
Elizabeth Sánchez ◽  
Nicole Orellana ◽  
Javier Enrione ◽  
Cristian A. Acevedo
Keyword(s):  

Biomedicines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 270
Author(s):  
Rachel L. Washburn ◽  
Karl Mueller ◽  
Gurvinder Kaur ◽  
Tanir Moreno ◽  
Naima Moustaid-Moussa ◽  
...  

Diabetes mellitus (DM) is a complex metabolic disease affecting one-third of the United States population. It is characterized by hyperglycemia, where the hormone insulin is either not produced sufficiently or where there is a resistance to insulin. Patients with Type 1 DM (T1DM), in which the insulin-producing beta cells are destroyed by autoimmune mechanisms, have a significantly increased risk of developing life-threatening cardiovascular complications, even when exogenous insulin is administered. In fact, due to various factors such as limited blood glucose measurements and timing of insulin administration, only 37% of T1DM adults achieve normoglycemia. Furthermore, T1DM patients do not produce C-peptide, a cleavage product from insulin processing. C-peptide has potential therapeutic effects in vitro and in vivo on many complications of T1DM, such as peripheral neuropathy, atherosclerosis, and inflammation. Thus, delivery of C-peptide in conjunction with insulin through a pump, pancreatic islet transplantation, or genetically engineered Sertoli cells (an immune privileged cell type) may ameliorate many of the cardiovascular and vascular complications afflicting T1DM patients.


2021 ◽  
Vol 22 (11) ◽  
pp. 5828
Author(s):  
Kyoko Imanaka-Yoshida

Tenascin-C (TNC) is a large extracellular matrix (ECM) glycoprotein and an original member of the matricellular protein family. TNC is transiently expressed in the heart during embryonic development, but is rarely detected in normal adults; however, its expression is strongly up-regulated with inflammation. Although neither TNC-knockout nor -overexpressing mice show a distinct phenotype, disease models using genetically engineered mice combined with in vitro experiments have revealed multiple significant roles for TNC in responses to injury and myocardial repair, particularly in the regulation of inflammation. In most cases, TNC appears to deteriorate adverse ventricular remodeling by aggravating inflammation/fibrosis. Furthermore, accumulating clinical evidence has shown that high TNC levels predict adverse ventricular remodeling and a poor prognosis in patients with various heart diseases. Since the importance of inflammation has attracted attention in the pathophysiology of heart diseases, this review will focus on the roles of TNC in various types of inflammatory reactions, such as myocardial infarction, hypertensive fibrosis, myocarditis caused by viral infection or autoimmunity, and dilated cardiomyopathy. The utility of TNC as a biomarker for the stratification of myocardial disease conditions and the selection of appropriate therapies will also be discussed from a clinical viewpoint.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Diana P. Pires ◽  
Rodrigo Monteiro ◽  
Dalila Mil-Homens ◽  
Arsénio Fialho ◽  
Timothy K. Lu ◽  
...  

AbstractIn the era where antibiotic resistance is considered one of the major worldwide concerns, bacteriophages have emerged as a promising therapeutic approach to deal with this problem. Genetically engineered bacteriophages can enable enhanced anti-bacterial functionalities, but require cloning additional genes into the phage genomes, which might be challenging due to the DNA encapsulation capacity of a phage. To tackle this issue, we designed and assembled for the first time synthetic phages with smaller genomes by knocking out up to 48% of the genes encoding hypothetical proteins from the genome of the newly isolated Pseudomonas aeruginosa phage vB_PaeP_PE3. The antibacterial efficacy of the wild-type and the synthetic phages was assessed in vitro as well as in vivo using a Galleria mellonella infection model. Overall, both in vitro and in vivo studies revealed that the knock-outs made in phage genome do not impair the antibacterial properties of the synthetic phages, indicating that this could be a good strategy to clear space from phage genomes in order to enable the introduction of other genes of interest that can potentiate the future treatment of P. aeruginosa infections.


Sign in / Sign up

Export Citation Format

Share Document