scholarly journals Development of decontamination and detergents for the nuclear industry

2021 ◽  
Vol 5 (4) ◽  
pp. 192-200
Author(s):  
Kudryavtsev P

At the enterprises of the radiochemical industry in the world, the task is to clean the technological and research equipment, overalls, and personnel from contamination with radioactive products. This task is especially relevant in case of emergencies, for example, such as an accident at a nuclear power plant in Fukushima, Japan. A review of the deactivation methods currently used is reviewed. It has been shown that the most typical pollutants are mixtures of radionuclides 137Cs, 144Ce, 144Pr, 90Sr, and 239Pu. All these elements are prone to the formation of chelate complexes. Therefore, complexing substances should be an essential component of deactivation solutions that form stable, water-soluble complex compounds with these radionuclides. When creating the recipe, we chose those complexing agents with the most persistent complex compounds with the expected pollutants. For research and testing in real conditions, we have prepared three types of technical detergents of various compositions with the code name MDS for decontaminating various surfaces, equipment, and workwear. The composition of these preparations consists mainly of an optimized mixture of surfactants, complexing agents, corrosion inhibitors, and processing aids. The studies were conducted to evaluate the possibility of using these funds for deactivation of premises, equipment, washing clothes in the Federal Unitary Enterprise "Mayak" and at its branch NIKIET in town Zarechny at Beloyarskyaya Nuclear Power Station in Russia. The effectiveness of deactivation was judged by the amount of residual contamination of the surface of the samples. The deactivating ability of MDS preparations for stainless, carbon steel, and plastic contaminated with β- and α-emitting nuclides was tested. The possibility of using MDS detergents for the deactivation of platinum ampoules stored as radioactive waste was assessed. The possibility of using MDS detergents for the deactivation of fabric materials, including underwear and work clothes, was also evaluated. The tests showed the high efficiency of the developed detergent MDS compared to the existing and currently used deactivation agents.

2020 ◽  
Vol 22 (3) ◽  
pp. 205
Author(s):  
S.M. Adekenov ◽  
А.N. Zhabayeva ◽  
G.М. Baisarov

The article discusses the results of a study of the water solubility of natural sesquiterpene lactone arglabin, in particular, its ability to complex formation with complexing agents polyvinylpyrrolidone, the disodium salt of glycyrrhizic acid, magnesium carbonate. Mechanocomposites with polyvinylpyrrolidone and disodium salt of glycyrrhizic acid, which have increased water solubility, were obtained by the method of mechanochemical treatment of arglabin native. At the same time, the best result of dissolution in water is achieved by a two-hour treatment with polyvinylpyrrolidone and with disodium salt of glycyrrhizic acid. The water solubility of complex compounds of arglabin with polyvinylpyrrolidone increases by 4.61 times, and with disodium salt of glycyrrhizic acid by 4.42 times.


1997 ◽  
Vol 506 ◽  
Author(s):  
L.R. Van Loon ◽  
M.A. Glaus ◽  
S. Stallone ◽  
A. Laube

ABSTRACTThe sorption of radionuclides on repository components (e.g. cement) is an important process since it controls the release of radionuclides from the repository [1]. A strong sorption of radionuclides is desirable since it will allow only a small release of radionuclides to the geo-and biosphere. The strong sorption behaviour of radionuclides, however, could possibly be decreased by several orders of magnitude by the presence of organic ligands. Ligands such as EDTA, NTA, citric acid etc. are inherent components of radioactive waste since these complexing agents are used in nuclear power stations for decontaminating purposes. Other ligands might be formed by degrading organic polymers present in low and intermediate level radioactive waste [2, 3]. Cellulose materials such as cotton, paper and wood form a substantial part (ca. 50 %) of the organic waste [1]. The use of large amounts of cement for constructing a repository causes alkaline environments in which the pH of the pore solution will remain above 12.5 for periods of the order of 105 years [4]. It is well known from the literature that cellulose is unstable under alkaline conditions and will degrade to water soluble, low molecular weight compounds by the peeling-off reaction [5]. The main degradation product of cellulose is isosaccharinic acid (ISA), which is stable under alkaline conditions [5-10]. ISA enhances the solubility of Pu(IV) [7, 8] and has an adverse effect on the sorption of Eu(III), Th(IV) and Ni(II) [6]. For instance, in a solution of 10-3 M ISA, the solubility of Pu(IV) at pH 12 increases by a factor of 20000 [11]. The sorption of Pu(IV) [8], Eu(III), Th(IV) and Ni(II) [6], however, was affected to only a minor extent. The observed effects were - by analogy with gluconic acid [12] - interpreted to be due to a strong complexation of these metals. The concentration of ISA in the pore water is the key parameter for evaluating its effect on radionuclide sorption [13].A full assessment of the effect of cellulose degradation on the sorption requires a detailed understanding of the mechanisms involved. The present study gives an overview of the different processes involved and describes how to quantify the concentration of isosaccharinic acid in the pore water of a repository.


2018 ◽  
Vol 35 (4) ◽  
pp. 110-113
Author(s):  
V. A. Tupchienko ◽  
H. G. Imanova

The article deals with the problem of the development of the domestic nuclear icebreaker fleet in the context of the implementation of nuclear logistics in the Arctic. The paper analyzes the key achievements of the Russian nuclear industry, highlights the key areas of development of the nuclear sector in the Far North, and identifies aspects of the development of mechanisms to ensure access to energy on the basis of floating nuclear power units. It is found that Russia is currently a leader in the implementation of the nuclear aspect of foreign policy and in providing energy to the Arctic region.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3832
Author(s):  
Awwal Mohammed Arigi ◽  
Gayoung Park ◽  
Jonghyun Kim

Advancements in the nuclear industry have led to the development of fully digitized main control rooms (MCRs)—often termed advanced MCRs—for newly built nuclear power plants (NPPs). Diagnosis is a major part of the cognitive activity in NPP MCRs. Advanced MCRs are expected to improve the working environment and reduce human error, especially during the diagnosis of unexpected scenarios. However, with the introduction of new types of tasks and errors by digital MCRs, a new method to analyze the diagnosis errors in these new types of MCRs is required. Task analysis for operator diagnosis in an advanced MCR based on emergency operation was performed to determine the error modes. The cause-based decision tree (CBDT) method—originally developed for analog control rooms—was then revised to a modified CBDT (MCBDT) based on the error mode categorizations. This work examines the possible adoption of the MCBDT method for the evaluation of diagnosis errors in advanced MCRs. We have also provided examples of the application of the proposed method to some common human failure events in emergency operations. The results show that with some modifications of the CBDT method, the human reliability in advanced MCRs can be reasonably estimated.


Author(s):  
Ronald C. Lippy

The nuclear industry is preparing for the licensing and construction of new nuclear power plants in the United States. Several new designs have been developed and approved, including the “traditional” reactor designs, the passive safe shutdown designs and the small modular reactors (SMRs). The American Society of Mechanical Engineers (ASME) provides specific Codes used to perform preservice inspection/testing and inservice inspection/testing for many of the components used in the new reactor designs. The U.S. Nuclear Regulatory Commission (NRC) reviews information provided by applicants related to inservice testing (IST) programs for Design Certifications and Combined Licenses (COLs) under Part 52, “Licenses, Certifications, and Approvals for Nuclear Power Plants,” in Title 10 of the Code of Federal Regulations (10 CFR Part 52) (Reference 1). The 2012 Edition of the ASME OM Code defines a post-2000 plant as a nuclear power plant that was issued (or will be issued) its construction permit, or combined license for construction and operation, by the applicable regulatory authority on or following January 1, 2000. The New Reactors OM Code (NROMC) Task Group (TG) of the ASME Code for Operation and Maintenance of Nuclear Power Plants (NROMC TG) is assigned the task of ensuring that the preservice testing (PST) and IST provisions in the ASME OM Code to address pumps, valves, and dynamic restraints (snubbers) in post-2000 nuclear power plants are adequate to provide reasonable assurance that the components will operate as needed when called upon. Currently, the NROMC TG is preparing proposed guidance for the treatment of active pumps, valves, and dynamic restraints with high safety significance in non-safety systems in passive post-2000 reactors including SMRs.


Author(s):  
Yao Wang

According to existing research results, fire risk makes a significant contribution to the total risk of a nuclear power plant (NPP). So fire probabilistic safety analysis (PSA) for NPPs is becoming more and more important in recent years. How to perform human reliability analysis (HRA) which is an essential part of PSA is therefore being paid more and more attention in fire PSA. This paper describes the characteristics and special considerations of HRA in fire PSA, and demonstrates in fire PSA how to use SPAR-H method which is so-called an advanced second-generation HRA method and is being widely used in PSA for Chinese NPPs. The study results can be a reference for other HRA analysts to use SPAR-H method in fire PSA models or other PSA models in Chinese NPPs or the world-wide nuclear industry.


Author(s):  
Koichi Tsumori ◽  
Yoshizumi Fukuhara ◽  
Hiroyuki Terunuma ◽  
Koji Yamamoto ◽  
Satoshi Momiyama

A new inspection standard that enhanced quality of operating /maintenance management of the nuclear power plant was introduced in 2009. After the Fukushima Daiichi nuclear disaster (Mar. 11th 2011), the situation surrounding the nuclear industry has dramatically changed, and the requirement for maintenance management of nuclear power plants is pushed for more stringent nuclear safety regulations. The new inspection standard requires enhancing equipment maintenance. It is necessary to enhance maintenance of not only equipment but also piping and pipe support. In this paper, we built the methodology for enhancing maintenance plan by rationalizing and visualizing of piping and pipe support based on the “Maintenance Program” in cooperating with 3D-CAD system.


2021 ◽  
Vol 29 (84) ◽  
pp. 99-112
Author(s):  
Sascha Brünig

Abstract In the mid-1970s, the dangers associated with nuclear power moved to the center of risk debates in Germany. Following the reactor accident at Three Mile Island (1979) and the Chernobyl disaster (1986), the West German nuclear industry’s business prospects severely deteriorated. How did the nuclear industry perceive and confront the challenge of nuclear skepticism? And how did this emerging challenge alter the perceived future of nuclear technology in the Federal Republic and beyond? The article argues that the nuclear industry did not passively accept the »depletion of utopian energies« (J. Habermas) to which the peaceful use of the atom was subjected. Instead, the industry worked to create new (utopian) prospects for nuclear power. The industry’s public relations campaign positioned nuclear power in two interrelated fields of insecurity: the decline of industrial society and environmental crises. Both threats, ran the argument put forth by nuclear proponents, could only be combatted by relying on nuclear power for electricity production. In this way, nuclear power was translated into a comprehensive promise of security that was intended to salvage the future of nuclear power as well as that of its investors in the face of growing anti-nuclear sentiment.


1962 ◽  
Vol 40 (1) ◽  
pp. 1019-1024 ◽  
Author(s):  
Seiichi Yoshida

A water-soluble pigment excreted from Serratia marcescens has been purified by precipitation with ammonium sulphate, dialysis, and ultracentrifugation at different pH values. The purified pigment showed a single band in the ultracentrifuge and by electrophoretic analysis at several pH values. An average molecular weight of 5 × 106 was calculated from light-scattering measurements. This pigment is composed of carbohydrate and protein combined with prodigiosin, and several properties of the complex are described.


2012 ◽  
Vol 253-255 ◽  
pp. 303-307 ◽  
Author(s):  
Jing Yang ◽  
Zhen Fu Chen ◽  
Yuan Chu Gan ◽  
Qiu Wang Tao

Radiation shielding concrete is widely used in nuclear power plants, accelerators, hospitals, etc. With the development of nuclear industry technology, research on radiation shielding material properties is of great importance. Research on properties of radiation shielding concrete with different aggregates or admixtures and the effect of high temperature on the performance of shielding concrete are introduced. Along with the nuclear waste increase, shielding concrete durability and nuclear waste disposal are getting paramount.


Sign in / Sign up

Export Citation Format

Share Document