scholarly journals E-textiles prototypes and applications on wearable devices

2021 ◽  
Vol 7 (5) ◽  
pp. 169-171
Author(s):  
Renato Giacomini ◽  
Jéssica Maia Piccirillo

This scientific research has the purpose of studying conductive textiles, also known as "smart" textiles. At the ending of the study, we performed the assembly of functional prototypes to give the technology proof of concept to further studies. Between these prototypes are the "smart" jacket, the "smart" pillow, and the "smart" t-shirt. All of these prototypes have electronic devices integrated with conductive textile fabrics and yarns. The functionality of the prototypes involves the obtained vital signals from the user's body, such as heartbeat, and identification of the "touch" made by the user's hand to send commands to a computer or a cellphone screen.

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4654
Author(s):  
Andrzej Wetula ◽  
Andrzej Bień ◽  
Mrunal Parekh

Measurements of medium and high voltages in a power grid are normally performed with large and bulky voltage transformers or capacitive dividers. Besides installation problems, these devices operate in a relatively narrow frequency band, which limits their usability in modern systems that are saturated with power electronic devices. A sensor that can be installed directly on a wire and can operate without a galvanic connection to the ground may be used as an alternative voltage measurement device. This type of voltage sensor can complement current sensors installed on a wire, forming a complete power acquisition system. This paper presents such a sensor. Our sensor is built using two dielectric elements with different permeability coefficients. A finite element method simulation is used to estimate the parameters of a constructed sensor. Besides simulations, a laboratory model of a sensor was built and tested in a medium-voltage substation. Our results provide a proof of concept for the presented sensor. Some errors in voltage reconstruction have been traced to an oversimplified data acquisition and transmission system, which has to be improved during the further development of the sensor.


2021 ◽  
pp. 221-226
Author(s):  
Kirsten Hornbeak ◽  
◽  
Jay Duchnick ◽  
Anthony Medak ◽  
Peter Lindholm ◽  
...  

Historically, electronic devices have been generally prohibited during hyperbaric oxygen (HBO2) therapy due to risk of fire in a pressurized, oxygen-rich environment. Point-of-care ultrasound (POCUS), however, has emerged as a useful imaging modality in diverse clinical settings. Hyperbaric chambers treating critically ill patients would benefit from the application of POCUS at pressure to make real-time patient assessments. Thus far, POCUS during HBO2 therapy has been limited due to required equipment modifications to meet safety standards. Here we demonstrate proof of concept, safety, and successful performance of an off-the-shelf handheld POCUS system (SonoSite iViz) in a clinical hyperbaric environment without need for modification.


2022 ◽  
pp. 58-64
Author(s):  
Mohit Angurala

Wearable devices have impacted the daily life of every individual. These devices come with the embedded feature that fits almost within clothes, accessories, or even watches. One of the wearables named “wrist-worn devices” has gained acceptance by the masses among other wearables. Vital information can be easily gathered with the help of such wearables. These are also suitable for myriad applications such as sports, agriculture, medical, and several more. This chapter gives a comprehensive review of wearable computing electronic devices being used in various fields and provides the latest trends in wearables. The main objective of this review is to discuss various challenges that are faced by individuals in using wearables and the latest methods that can overcome these issues. In the modern epoch, wireless wearable devices have gained a lot of importance in various fields such as sports, agriculture, medical, and many more.


2015 ◽  
Vol 3 (6) ◽  
pp. 2547-2551 ◽  
Author(s):  
Yuan Liang ◽  
Zhi Wang ◽  
Jiao Huang ◽  
Huhu Cheng ◽  
Fei Zhao ◽  
...  

An integrated series of in-fiber all-solid-state graphene supercapacitors have been fabricated for flexible wearable electronic devices.


Micromachines ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 106
Author(s):  
Chang-Chun Lee ◽  
Jui-Chang Chuang ◽  
Ruei-Ci Shih ◽  
Chi-Wei Wang

Mainstream next generation electronic devices with miniaturized structures and high levels of performance are needed to meet the characteristic requirements of electronics with flexible and stretchable capabilities. Accordingly, several applied fields of innovative electronic component techniques, such as wearable devices, foldable curtain-like displays, and flexible hybrid electronic (FHE) biosensors, are considered. This study presents a novel inspection system with multifunctions of stressing tensile and bending mechanical loads to acquire the stretchable and rollable characteristics of soft specimens. The performance of the proposed measurement platform using samples of three different geometric types is evaluated in terms of its stretchability. The results show a remarkable enhancement of mechanical reliability when the sine wave geometric structure is used. A symmetrical sine wave-shaped sample is designed to measure performance under cyclic rolling. The proposed measurement platform of flexible electronics meets the testing requirements of mechanical reliability for the development of future flexible electronic components and FHE products.


2020 ◽  
Vol 32 (1) ◽  
pp. 137-137
Author(s):  
Takayuki Tanaka ◽  
Yuichi Kurita ◽  
Keisuke Shima ◽  
Norihisa Miki

Many wearable devices have been developed and are being currently used, owing to the miniaturization of computers and electronic devices and advancements in calculation processing algorithms. They have various uses and forms, for example, a power assist robot for reducing the burden of work, a wearable sensor for measuring the level of activity and health condition of people and animals, and so on. In Japan, wearable devices have attracted attention as an important technology in a human-centered society (Society 5.0) and can help realize economic development and address social problems. A society that can benefit from a wide range of wearable devices is being realized. This special issue covers robotics and mechatronics technologies for next generation wearable devices to realize such a society, including wearable systems and their elemental technology, AI, IoT, and other relative technologies. We sincerely thank the authors for their fine contributions and the reviewers for their generous time and effort. We would also like to thank the Editorial Board of the Journal of Robotics and Mechatronics for their help with this special issue.


2020 ◽  
Vol 10 (12) ◽  
pp. 4392 ◽  
Author(s):  
Goran M. Stojanović ◽  
Maja M. Radetić ◽  
Zoran V. Šaponjić ◽  
Marija B. Radoičić ◽  
Milan R. Radovanović ◽  
...  

This work presents a new multilayered microfluidic platform, manufactured using a rapid and cost-effective xurography technique, for the detection of drug concentrations in sweat. Textile fabrics made of cotton and polyester were used as a component of the platform, and they were positioned in the middle of the microfluidic device. In order to obtain a highly conductive textile, the fabrics were in situ coated with different amounts of polyaniline and titanium dioxide nanocomposite. This portable microfluidic platform comprises at least three layers of optically transparent and flexible PVC foils which were stacked one on top of the other. Electrical contacts were provided from the edge of the textile material when a microfluidic variable resistor was actually created. The platform was tested in plain artificial sweat and in artificial sweat with a dissolved cytostatic test drug, cyclophosphamide, of different concentrations. The proposed microfluidic device decreased in resistance when the sweat was applied. In addition, it could successfully detect different concentrations of cytostatic medication in the sweat, which could make it a very useful tool for simple, reliable, and fast diagnostics.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2429
Author(s):  
Sebastian Micus ◽  
Michael Haupt ◽  
Götz T. Gresser

Experts attest the smart textiles market will have high growth potential during the next ten years. Laser soldering is considered to be a good contacting method because it is a contactless process. For this reason, it is intended to investigate the contacting process of printed circuit boards (PCB) to isolated conductive textile strips by means of a ytterbium-doped fiber laser (1064 nm). During the investigation, the copper strands in the textile tape were stripped by the laser and soldered to the PCB without any transport of the textile. Therefore, we investigated different sets of parameters by means of a design of experiment (DoE) for different types of solder pastes. Finally, the joinings were electrically analyzed using a contact resistance test, optically with a REM examination, and mechanically using a peeling test.


Science ◽  
2020 ◽  
Vol 368 (6495) ◽  
pp. 1091-1098 ◽  
Author(s):  
Cheng-Gong Han ◽  
Xin Qian ◽  
Qikai Li ◽  
Biao Deng ◽  
Yongbin Zhu ◽  
...  

Harvesting heat from the environment into electricity has the potential to power Internet-of-things (IoT) sensors, freeing them from cables or batteries and thus making them especially useful for wearable devices. We demonstrate a giant positive thermopower of 17.0 millivolts per degree Kelvin in a flexible, quasi-solid-state, ionic thermoelectric material using synergistic thermodiffusion and thermogalvanic effects. The ionic thermoelectric material is a gelatin matrix modulated with ion providers (KCl, NaCl, and KNO3) for thermodiffusion effect and a redox couple [Fe(CN)64–/Fe(CN)63–] for thermogalvanic effect. A proof-of-concept wearable device consisting of 25 unipolar elements generated more than 2 volts and a peak power of 5 microwatts using body heat. This ionic gelatin shows promise for environmental heat-to-electric energy conversion using ions as energy carriers.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Katsuyuki Fujii ◽  
Yasuyuki Okumura

Body area network (BAN) research, which uses the human body as a transmission channel, has recently attracted considerable attention globally. Zimmerman first advocated the idea in 1995. Illustrations of the electric field streamlines around the human body and wearable devices with electrodes were drawn. In the pictures, the electrodes of the wearable devices constitute a closed circuit with the human body and the earth ground. However, analysis of the circuit has not been conducted. In this study, we model the human body shunted to earth ground in a radio anechoic chamber to analyze the electric field strength around it and clarify the effect of earth ground during BAN run time. The results suggest that earth ground has little influence on the human body and wearable devices. Only when the human body is directly grounded, the electric field near the feet area will decrease. The input impedance of the transmitter is approximately the same, and the received open-circuit voltage and current of the receiver are also the same. In addition, we elucidate that stable communications can be established by developing a closed circuit using earth ground as return path. When the external electronic devices and human body are shunted to earth ground, the received open-circuit voltage and current increase.


Sign in / Sign up

Export Citation Format

Share Document