scholarly journals Delicate lithium-manganese spinel LiMn2O4 of quasi-spherical morphology, obtained by hydrolysis of complex compounds, as cathode material for high-power current sources

Author(s):  
Sviatoslav A. Kirillov ◽  
◽  
Anna V. Potapenko ◽  
Tetiana V. Lisnycha ◽  
◽  
...  

Precipitation of hydroxides and carbonates from solutions containing complex compounds is a valuable industrial process enabling one to synthesize electrode materials with high density particles of microspherical morphology and high tap density. As a complex formation agent, ammonia is almost exclusively used in this process. Aiming at the search of other complex formation agents and the detailed studies of complex formation at precipitation, we have first investigated the hydrolysis of solutions containing citric acid. Equilibria in solutions containing citrate complexes of manganese and carbonates are computed. It is found that in Mn(NO3)2 - хC6H8O7∙H2O - уNa2CO3 systems, a neutral Mn(HCitr) complex dominates up to pH=9.5 and precipitation of MnCO3 from carbonate containing solutions begins at рН~6.5. Experiments show that MnCO3 precipitates from these systems in the form of openwork quasi-spherical aggregates formed by nanosized crystals. The synthesis of LiMn2O4 from this precursor does not influence the morphology of the material, and the resulting product consists of aggregates of less than 4 mkm and nanocrystals of ~90 nm. Electrochemical tests evidence that for the best samples, the specific capacity of 103 mAh/g can be achieved at 1 C current. At 20 C current, they deliver ~25 mAh/g capacity. After high-rate tests, in control cycles with 1 C current, the samples demonstrate high capacity retention, returning up to 98% of their initial capacity. This signifies their good prospects for using in high-rate batteries.

Research ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Liyuan Liu ◽  
Yih-Chyng Wu ◽  
Patrick Rozier ◽  
Pierre-Louis Taberna ◽  
Patrice Simon

Recently, multivalent aqueous calcium-ion batteries (CIBs) have attracted considerable attention as a possible alternative to Li-ion batteries. However, traditional Ca-ion storage materials show either limited rate capabilities and poor cycle life or insufficient specific capacity. Here, we tackle these limitations by exploring materials having a large interlayer distance to achieve decent specific capacities and one-dimensional architecture with adequate Ca-ion passages that enable rapid reversible (de)intercalation processes. In this work, we report the high-yield, rapid, and low-cost synthesis of 1D metal oxides MV3O8 (M=Li, K), CaV2O6, and CaV6O16·7H2O (CVO) via a molten salt method. Firstly, using 1D CVO as electrode materials, we show high capacity 205 mA h g-1, long cycle life (>97% capacity retention after 200 cycles at 3.0 C), and high-rate performance (117 mA h g-1 at 12 C) for Ca-ion (de)intercalation. This work represents a step forward for the development of the molten salt method to synthesize nanomaterials and to help pave the way for the future growth of Ca-ion batteries.


Nanoscale ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 5812-5816 ◽  
Author(s):  
Jinyun Liu ◽  
Xirong Lin ◽  
Tianli Han ◽  
Qianqian Lu ◽  
Jiawei Long ◽  
...  

Metallic germanium (Ge) as the anode can deliver a high specific capacity and high rate capability in lithium ion batteries.


2019 ◽  
Vol 31 (8) ◽  
pp. 1709-1718
Author(s):  
T. Veldevi ◽  
K. Thileep Kumar ◽  
R.A. Kalaivani ◽  
S. Raghu ◽  
A.M. Shanmugharaj

Hierarchical nanostructured graphene–manganese dioxide nanowire (G-MnO2-NW) composites have been prepared by hydrothermal synthesis route using water/1-decanol as the medium. Synthesized materials were analyzed using various characterization tools to corroborate their chemical compositions, structure/morphology and surface area. Electrochemical measurements of the synthesized G-MnO2-NW electrode materials delivered the highest specific capacity (255 Fg-1), high rate capability and improved cycling stability at 0.5 Ag–1 in 1M sodium sulfate solution and this fact may be attributed to its high surface area and porosity. Moreover, synthesized G-MnO2-NW electrodes displayed better energy and power density, when compared to the MnO2-NW based electrodes.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Danyang Feng ◽  
Tu-Nan Gao ◽  
Ling Zhang ◽  
Bingkun Guo ◽  
Shuyan Song ◽  
...  

AbstractManganese oxides are regarded as one of the most promising cathode materials in rechargeable aqueous Zn-ion batteries (ZIBs) because of the low price and high security. However, the practical application of Mn2O3 in ZIBs is still plagued by the low specific capacity and poor rate capability. Herein, highly crystalline Mn2O3 materials with interconnected mesostructures and controllable pore sizes are obtained via a ligand-assisted self-assembly process and used as high-performance electrode materials for reversible aqueous ZIBs. The coordination degree between Mn2+ and citric acid ligand plays a crucial role in the formation of the mesostructure, and the pore sizes can be easily tuned from 3.2 to 7.3 nm. Ascribed to the unique feature of nanoporous architectures, excellent zinc-storage performance can be achieved in ZIBs during charge/discharge processes. The Mn2O3 electrode exhibits high reversible capacity (233 mAh g−1 at 0.3 A g−1), superior rate capability (162 mAh g−1 retains at 3.08 A g−1) and remarkable cycling durability over 3000 cycles at a high current rate of 3.08 A g−1. Moreover, the corresponding electrode reaction mechanism is studied in depth according to a series of analytical methods. These results suggest that rational design of the nanoporous architecture for electrode materials can effectively improve the battery performance. "Image missing"


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Yongzheng Fang ◽  
Yingying Zhang ◽  
Chenxu Miao ◽  
Kai Zhu ◽  
Yong Chen ◽  
...  

AbstractSodium ion batteries and capacitors have demonstrated their potential applications for next-generation low-cost energy storage devices. These devices's rate ability is determined by the fast sodium ion storage behavior in electrode materials. Herein, a defective TiO2@reduced graphene oxide (M-TiO2@rGO) self-supporting foam electrode is constructed via a facile MXene decomposition and graphene oxide self-assembling process. The employment of the MXene parent phase exhibits distinctive advantages, enabling defect engineering, nanoengineering, and fluorine-doped metal oxides. As a result, the M-TiO2@rGO electrode shows a pseudocapacitance-dominated hybrid sodium storage mechanism. The pseudocapacitance-dominated process leads to high capacity, remarkable rate ability, and superior cycling performance. Significantly, an M-TiO2@rGO//Na3V2(PO4)3 sodium full cell and an M-TiO2@rGO//HPAC sodium ion capacitor are fabricated to demonstrate the promising application of M-TiO2@rGO. The sodium ion battery presents a capacity of 177.1 mAh g−1 at 500 mA g−1 and capacity retention of 74% after 200 cycles. The sodium ion capacitor delivers a maximum energy density of 101.2 Wh kg−1 and a maximum power density of 10,103.7 W kg−1. At 1.0 A g−1, it displays an energy retention of 84.7% after 10,000 cycles.


Author(s):  
Lei Chen ◽  
Yang MinRui ◽  
Kong Fan ◽  
Wenling Du ◽  
Jiyuan Guo ◽  
...  

With the increasing demand for sustainable and clean energies, seeking high-capacity density electrode materials applied in the rechargeable metal-ion batteries is urgent. In this work, using first-principles calculations, we evaluate...


2017 ◽  
Vol 5 (46) ◽  
pp. 24083-24090 ◽  
Author(s):  
Hailong Lyu ◽  
Jiurong Liu ◽  
Shannon Mahurin ◽  
Sheng Dai ◽  
Zhanhu Guo ◽  
...  

Organic composite electrode materials based on aromatic polyimide (PI) and electron conductive polythiophene (PT) have been prepared by a facile in situ chemical oxidation polymerization method. The optimized composite electrode PI30PT delivers a remarkable high-rate cyclability, achieving a high capacity of 89.6 mA h g−1 at 20 C with capacity retention of 94% after 1000 cycles.


2012 ◽  
Vol 573-574 ◽  
pp. 1198-1202
Author(s):  
You Rong Wang ◽  
Peng Chen ◽  
Xian Wang Zhang ◽  
Jia Wang ◽  
Si Qing Cheng

The development of new electrode materials with high storage capacity is indispensable for improving rechargeable lithium batteries. Herein, high performance TiO2 microspheres have been fabricated by a facile solvothermal method. The obtained TiO2 microspheres were investigated by the measurements of X-ray diffraction pattern, scanning electronic microscopy, and electrochemical tests. As the rates increase from 1C to 20C, the TiO2 composites display high discharge capacities of 414.6 mAh g-1 for the first cycle at 1 C and 244.6 mAh g-1 at 20 C over 100 cycles. CV experiments indicate that there are two peculiar pairs of cathodic/anodic peaks occurred in the range of 1.0-3.0V, which clearly demonstrates that the structure of the TiO2 microspheres here is quite different from the ordinary anatase TiO2. Excellent rate capability and cycle ability are ascribed presumablely to the unique structure.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 680
Author(s):  
Jianyang Jiang ◽  
Xiong Xiong Liu ◽  
Jiayu Han ◽  
Ke Hu ◽  
Jun Song Chen

Transition metal hydroxides have attracted a lot of attention as the electrode materials for supercapacitors owing to their relatively high theoretical capacity, low cost, and facile preparation methods. However, their low intrinsic conductivity deteriorates their high-rate performance and cycling stability. Here, self-supported sheets-on-wire CuO@Ni(OH)2/Zn(OH)2 (CuO@NiZn) composite nanowire arrays were successfully grown on copper foam. The CuO nanowire backbone provided enhanced structural stability and a highly efficient electron-conducting pathway from the active hydroxide nanosheets to the current collector. The resulting CuO@NiZn as the battery-type electrode for supercapacitor application delivered a high capacity of 306.2 mAh g−1 at a current density of 0.8 A g−1 and a very stable capacity of 195.1 mAh g−1 at 4 A g−1 for 10,000 charge–discharge cycles. Furthermore, a quasi-solid-state hybrid supercapacitor (qss HSC) was assembled with active carbon, exhibiting 125.3 mAh g−1 at 0.8 A g−1 and a capacity of 41.6 mAh g−1 at 4 A g−1 for 5000 charge–discharge cycles. Furthermore, the qss HSC was able to deliver a high energy density of about 116.0 Wh kg−1. Even at the highest power density of 7.8 kW kg−1, an energy density of 20.5 Wh kg−1 could still be obtained. Finally, 14 red light-emitting diodes were lit up by a single qss HSC at different bending states, showing good potential for flexible energy storage applications.


2017 ◽  
Vol 24 (1) ◽  
pp. 23-27 ◽  
Author(s):  
Yuan Ma ◽  
Dajun Liu

AbstractThe research on impurity in the lithium iron phosphate has been a hot topic. Especially when prepared by the solid state method, the impurities occurred easily through high-heat sintering. But some impurity is not completely bad for the cell performance, such as Fe2P. In this paper, the influence of Fe2P has been researched. Using the magnetic separation method, the high and low contents of Fe2P in lithium iron phosphate are obtained and then compared with the primary sample. Results show that the Fe2P phase helps to improve the rate and cycling performances, but a too high content will decrease the specific capacity of the sample due to the low content of active material. It is proven with the electrochemical measurement that the Fe2P phase could enhance the electrical conductivity of cathode, but it gives electrochemical inactivity. It can be concluded that the high rate or high capacity types LiFePO4 could be obtained by controlling the content of Fe2P through adjusting the preparation process.


Sign in / Sign up

Export Citation Format

Share Document