scholarly journals Features of Strain Hardening of Heterogeneous Aluminium Alloys to Enhance the Fatigue Durability

2021 ◽  
Vol 22 (4) ◽  
pp. 619-642
Author(s):  
O. E. Zasimchuk ◽  
M. G. Chausov ◽  
B. M. Mordyuk ◽  
O. I. Baskova ◽  
V. I. Zasimchuk ◽  
...  

Heterogeneous aluminium alloys are in demand in the aviation industry, where the ability of the material to withstand fatigue loads is important. The topic of the article is the search for the most experimentally available methods of deformation effect on such materials in order to increase fatigue life. Unfortunately, previous studies were ambiguous due to the large number of factors influencing the fatigue of metal materials under the same type of mechanical load; so, we chose a dynamic load with pulse loading. It turned out that for heterogeneous 2024-T351 and D16CzATW alloys, shock–vibration loading (SVL) applied during static straining prolongs their further fatigue life at a certain magnitude of the deformation during the action of the pulse. For example, for the 2024-T351 alloy at the maximum stress of alternating load σmax = 400 MPa, the longest fatigue life should be expected at deformations εimp = 2–4%; and at the maximum stress of alternating (fatigue) loading of 440 MPa, it is at εimp = 3–5%. In comparison with the average values of fatigue life of the D16CzAT alloy in the initial state, fatigue life after processing increases at σmax = 340 MPa alloy by 11.6%, at a stress of σmax = 370 MPa, by 18.4%, at a stress of σmax = 400 MPa, by 21.2%. The positive effect of long-term exposure after treatment on fatigue life was also noted. The influence of the strengthening phases, such as the nanosize Θ-Al2Cu and S-CuAl2Mg particles, on the separate stages of pre-treatment of alloys and the effects of their quantities on total fatigue durability is investigated by statistical methods of transmission electron microscopy. The great attention is paid to the mechanism of formation of fatigue fracture embryos in the near-surface areas of the samples, for which analytical calculations and the experimental method of ultrasonic impact treatment (UIT) are used. It is shown that the use of UIT after SVL does not affect the fatigue life of the 2024-T351 alloy at a fatigue load frequency of 15 Hz, while the single UIT increases fatigue life of the alloy. It is concluded that the use of complex deformation loads accelerates the relaxation processes, which shorten fatigue life.

2021 ◽  
Vol 11 (10) ◽  
pp. 4522
Author(s):  
Tianzhu Sun ◽  
Pasquale Franciosa ◽  
Conghui Liu ◽  
Fabio Pierro ◽  
Darek Ceglarek

Remote laser welding (RLW) has shown a number of benefits of joining 6xxx aluminium alloys such as high processing speed and process flexibility. However, the crack susceptibility of 6xxx aluminium alloys during RLW process is still an open problem. This paper experimentally assesses the impact of transverse micro cracks on joint strength and fatigue durability in remote laser welding of AA6063-T6 fillet lap joints. Distribution and morphology of transverse micro cracks were acquired by scanning electron microscope (SEM) on cross-sections. Grain morphology in the weld zone was determined by electron backscatter diffraction (EBSD) while static tensile and dynamic fatigue tests were carried out to evaluate weld mechanical performance. Results revealed that increasing welding speed from 2 m/min to 6 m/min did not introduce additional transverse micro cracks. Additionally, welding at 2 m/min resulted in tensile strength improvement by 30% compared to 6 m/min due to the expansion of fusion zone, measured by the throat thickness, and refinement of columnar grains near fusion lines. Furthermore, the weld fatigue durability is significantly higher when fracture occurs in weld root instead of fusion zone. This can be achieved by increasing weld root angle with optimum weld fatigue durability at around 55°.


1999 ◽  
Vol 602 ◽  
Author(s):  
M. Petit ◽  
L. J. Martinez-Miranda ◽  
M. Rajeswari ◽  
A. Biswas ◽  
D. J. Kang ◽  
...  

AbstractWe have performed depth profile analyses of the lattice parameters in epitaxial thin films of La1−xCaxMno3 (LCMO), where x = 0.33 or 0.3, to understand the evolution of strain relaxation processes in these materials. The analyses were done using Grazing Incidence X-ray Scattering (GIXS) on films of different thicnesses on two different substrates, (100) oriented LaAlO3 (LAO), with a lattice mismatch of ∼2% and (110) oriented NGO, with a lattice mismatch of less than 0.1%. Films grown on LAO can exhibit up to three in-plane strained lattice constants, corresponding to a slight orthorhombic distortion of the crystal, as well as near-surface and columnar lattice relaxation. As a function of film thickness, a crossover from a strained film to a mixture of strained and relaxed regions in the film occurs in the range of 700 Å. The structural evolution at this thickness coincides with a change in the resistivity curve near the metalinsulator transition. The in-plane compressive strain has a range of 0.2 – 1.5%, depending on the film thickness for filsm in the range of 400 - 1500 A.


1967 ◽  
Vol 182 (1) ◽  
pp. 657-684 ◽  
Author(s):  
J. Spence ◽  
W. B. Carlson

Nozzles in cylindrical vessels have been of special interest to designers for some time and have offered a field of activity for many research workers. This paper presents some static and fatigue tests on five designs of full size pressure vessel nozzles manufactured in two materials. Supporting and other published work is reviewed showing that on the basis of the same maximum stress mild steel vessels give the same fatigue life as low alloy vessels. When compared on the basis of current codes it is shown that mild steel vessels may have five to ten times the fatigue life of low alloy vessels unless special precautions are taken.


2014 ◽  
Vol 598 ◽  
pp. 141-146
Author(s):  
Adam Lipski ◽  
Zbigniew Lis

The aim of this paper is to assess the impact of the rivet hole sizing process on the fatigue life based on the example of the structural connections characteristic for riveted joints used in aviation industry. Test specimens reflected the structural connection consisting in a riveted lap joint of an airplane plating stiffened with a T-bar. Connected plates and the T-bar are made of D16CzATW aluminum alloy. 3 mm diameter oval head solid rivets for aviation-related purposes were made of PA24 aluminum. During fatigue tests, individual specimens with non-sized holes and with sized holes were subjected to uniaxial, one-sided, fixed-amplitude loading (R = 0). It can be concluded from the fatigue life comparison that introduction of an additional operation in the riveting process, i.e. the hole sizing, results in significant, about two-fold increase of the fatigue life of the riveted structural connection, even at slight sizing degree. The difference of the specimen damage nature was observed between specimens with sized and non-sized holes.


2019 ◽  
Vol 17 (1) ◽  
pp. 25-40 ◽  
Author(s):  
Hafida Kahoul ◽  
Samira Belhour ◽  
Ahmed Bellaouar ◽  
Jean Paul Dron

Purpose This paper aims to present the fatigue life behaviour of upper arm suspension. The main objectives are to predict the fatigue life of the component and to identify the critical location. In this analysis, three aluminium alloys were used for the suspension, and their fatigue life was compared to select the suitable material for the suspension arm. Design/methodology/approach CAD model was prepared using Solid Works software, and finite element analysis was done using ANSYS 14.0 software by importing the Parasolid file to ANSYS. The model is subjected to loading and boundary conditions; the authors consider a vertical force with constant amplitude applied at the bushing that connected to the tire, the others two bushing that connected to the body of the car are constraint. Tetrahedral elements given enhanced results as compared to other types of elements; therefore, the elements (TET 10) are used. The maximum principal stress was considered in the linear static analysis, and fatigue analysis was done using strain life approach. Findings Life and damage are evaluated and the critical location was considered at node 63,754. From the fatigue analysis, aluminium alloys 7175-T73 (Al 90%-Zn 5.6%-Mg 2.5% -… …) and 2014-T6 (Al 93.5%-Cu 4.4%-Mg 0.5%… …) present a similar behaviour as compared to 6061-T6 (Al 97.9%-Mg 1.0%-Si 0.6%… … .); in this case of study, these lather are considered to be the materials of choice to manufacture the suspension arms; but 7175-T73 aluminium alloys remain the material with a better resistance to fatigue. Originality/value By the finite element analysis method and assistance of ANSYS software, it is able to analyse the different car components from varied aspects such as fatigue, and consequently save time and cost. For further research, the experimental works under controlled laboratory conditions should be done to determine the validation of the result from the software analysis.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
R. D. Dixon ◽  
E. H. Perez

The available design formulas for flat heads and blind end closures in the ASME Code, Section VIII, Divisions 1 and 2 are based on bending theory and do not apply to the design of thick flat heads used in the design of high pressure vessels. This paper presents new design formulas for thickness requirements and determination of peak stresses and stress distributions for fatigue and fracture mechanics analyses in thick blind ends. The use of these proposed design formulas provide a more accurate determination of the required thickness and fatigue life of blind ends. The proposed design formulas are given in terms of the yield strength of the material and address the fatigue strength at the location of the maximum stress concentration factor. Introduction of these new formulas in a nonmandatory appendix of Section VIII, Division 3 is recommended after committee approval.


2011 ◽  
Vol 268-270 ◽  
pp. 200-204
Author(s):  
Bao Cheng Zhang ◽  
Peng Fei Zhao ◽  
Peng Li

Using the method of the parameter study, some important dimensions of the cylinder head of an internal-combustion engine are analyzed. Under the mechanical load, the variational rules of the Von Mises maximum stress on cylinder head are obtained, which are influenced by the thickness of the floor plate, head plate, jobbing sheet, standing partition board, and side plate of inlet port and exhaust port. A hypothesis is verified that there is an ideal matching point among those above-mentioned main parameters. The quantificational proportion relations, between these key structural parameters and Von-Mises maximum stress of cylinder head, can provide a good help for the cylinder head’s structural design.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Alamsyah Alam ◽  
A. B. Mapangandro ◽  
Amalia Ika W ◽  
M U Pawara

Ro - Ro Ferry is equipped with a connecting door between the port and the ship. The ramp door experiences load during loading and discharging of the rolling cargo. This repetitive load may cause fatigue failure. The structure of the ramp door should withstand this load. Therefore, The ramp door should be properly designed to ensure the structural integrity of the ramp door. The purpose of this research is to analyze the maximum stress and the Fatigue life of the bow ramp door. The method used is the finite element method. The given loads are several types of vehicles that are commonly transported by the ship. The given load case is the point load working at the girder plate and between the girder plate. Based on the simulation results with the given point load, the maximum stress is identified located between the girder for the large truck case with 397.02 MPa, while the minimum stress located at the girder for sedan car with 43.93 MPa. As for the fatigue life of the bow ramp door construction. it is 1.17 ~ 398.64 years, and the load cycle is 5.35 x 104 ~ 9.05 x 106 cycle. Keywords : Bow Ramp Door; Stress; Fatigue Life; Finite Element; Ferry


2018 ◽  
Vol 275 ◽  
pp. 134-146
Author(s):  
Stanislav Rusz ◽  
Ondřej Hilšer ◽  
Stanislav Tylšar ◽  
Lubomír Čížek ◽  
Tomasz Tański ◽  
...  

The technology of structure refinement in materials with the aim of achieving substantial mechanical properties and maintaining the required plasticity level is becoming increasingly useful in industrial practice. Magnesium alloys are very progressive materials for utilization in practice thanks to their high strength-to-weight ratios (tensile strength/density). The presented paper analyses the effect of the input heat treatment of the AZ31 alloy on the change of structure and strength properties through the process of severe plastic deformation (SPD), which finds an increasing utilization, especially in the automotive and aviation industry. For the study of the influence of the SPD process (ECAP method) on the properties of the AZ31 alloy, two types of thermal treatment of the initial state of the structure were selected. The analysis of the structure of the AZ31 alloy was performed in the initial state without heat treatment and subsequently after heat treatment. In the next part, the influence of the number of passes on the strengthening curves was evaluated. Mechanical properties of the AZ31 alloy after ECAP were evaluated by hardness measurement and completed by structure analysis.


Metals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 619 ◽  
Author(s):  
Ján Lago ◽  
Libor Trško ◽  
Michal Jambor ◽  
František Nový ◽  
Otakar Bokůvka ◽  
...  

Ultrasonic impact peening was applied on welded joints manufactured from Strenx 700 MC high strength low alloy steel with the aim to improve the fatigue properties. Three different surface treatment parameters were tested, which resulted in transformation of the near-surface tensile residual stresses in the weld metal and heat affected zone to compressive residual stress field, while maximal values from −400 MPa up to −800 MPa were reached. The highest fatigue life improvement was reached by the double peening with the 85 N contact force, where the fatigue limit for N = 108 cycles increased from 370 MPa to 410 MPa.


Sign in / Sign up

Export Citation Format

Share Document