scholarly journals Combined effect of glyphosphate, saccharin and sodium benzoate on rats

2018 ◽  
Vol 9 (4) ◽  
pp. 591-597 ◽  
Author(s):  
M. A. Lieshchova ◽  
N. M. Tishkina ◽  
A. A. Bohomaz ◽  
P. M. Gavrilin ◽  
V. V. Brygadyrenko

Herbicides and food additives are included in many food products for humans. Non-used products or products beyond their expiry date are deposited in places of utilizatioin of solid municipal wastes, where they can take effects on the organisms of mouse-like rodents. Among the herbicides, glyphosphate takes first place in the world for volume of production, and is the most intensely used in agricultural farming. The discussion about negative impact on the organisms of mammals, especially against the background of using various substances and environmental factors, continues. In this study, we determined the combined effect of glyphosphate and food additives on the organism of laboratory animals, which manifested in changes in body weight, condition and indices of mass of the internal organs and blood parameters. Four groups of laboratory male rats were formed, which over 42 days received: unlimited access to clean water; 1% aqueous solution of glyphosate; 1% solution of glyphosphate and 1% solution sodium benzoate; 1% solution of glyphosphate with 1% solution of saccharin. Glyphosphate and glyphosphate with sodium benzoate and saccharin significantly reduced the daily increases in body weight of animals compared to the control group. The studied substances have notable suppressive effect on the immune system and haematopoiesis in general, which is manifested in reduce of relative mass of the thymus and spleen against the background of increase in the amount of lymphocytes in the peripheral blood. The inhibition of haematopoiesis is indicated by decrease in the amount of erythrocytes, neurophils and hemoglobin of blood of animals from the experimental groups. The impact on the digestive system of glyphosphate and food additives is indicated by occurance of the effect of “irritation” of mucous membranes, and, as a result, disorders in absorption followed by the disorder in metabolic processes. A dysbalance occurs in enzymic systems of the organism, which is manifested in distrophic processes, especially in the liver parenchyma, indicated by the activity of blood enzymes (ALT, AST, alkaline phosphatase), total number and ratio of proteins of blood plasma. We determined the impact of glyphosphate and its mixes with benzoate and saccharin on the pancreas, which manifests in severe pancreatitis with steep increase in the level of glucose of blood. The results of the study allow us to state that mixture of glyphosphate and food additives can cause toxic effect in animals and humans, which often contact with herbicides.

2019 ◽  
pp. 72-77
Author(s):  
D. A. Yevseyenko ◽  
Z. A. Dundarov ◽  
E. A. Nadyrov

Objective: to develop and justify the application of a new experimental method of the simulation of liver cirrhosis in laboratory animals. Material and methods. The simulation of liver cirrhosis was performed on 11 eugamic white Wistar male rats with the body weight of 203.5 ± 22.2 g (experimental group). The control group consisted of 12 healthy laboratory animals. Acute toxic liver injury resulting in cirrhosis was caused by means of the intraperitoneal administration of 50 % solution of carbon tetrachloride (CCl4) in olive oil on the first day of the experiment at a dosage of 0.1 ml of CCl4 + 0.4 ml of olive oil per 100 g of the body weight of the animals, on the second day of the experiment - 0.3 ml of CCl4 + 0.2 ml of olive oil per 100 g of the body weight of the animals. For synergism and potentiation of the hepatotoxic effect of CCl4, the animals daily had free access to 10% ethanol solution. The duration of the experiment was 65 days. The clinical and laboratory parameters were evaluated, the histological assessment of the preparations was carried out. The obtained data were compared with the same parameters of the control group of the animals. Results. The reproducibility of the model was 81.8% (9 animals). The values of the biochemical blood analysis indicated statistically significant increases in the levels of total bilirubin, serum transaminases (AST, ALT), creatinine, a decrease in the glucose level in the animals of the experimental group. The complex morphological confirmation of liver cirrhosis in progress was obtained. Conclusion. The proposed method of the liver cirrhosis modeling correlate with the values of the biochemical blood analysis, pathological changes in the tissue of the liver and internal organs of liver cirrhosis in humans. With the help of the original model, it is possible to investigate the pathogenesis and effects of various groups of pharmacological drugs on liver cirrhosis and its complications (acute blood loss associated with the syndrome of portal hypertension).


2019 ◽  
Vol 10 (2) ◽  
pp. 228-232 ◽  
Author(s):  
M. V. Bilan ◽  
M. A. Lieshchova ◽  
N. M. Tishkina ◽  
V. V. Brygadyrenko

Glyphosate is the main component of many broadly used herbicides due to its safety for humans and animals. It is known that the remains of glyphosate are present in allowable doses in fodders and food products, and, consumrd in low doses, it is found in insignificant amounts in milk, eggs and even in the internal organs (liver, kidneys) of animals. For determining combined impact of glyphosate and the commonest food additives on the composition of microbiota of animals, four groups of laboratory male rats were formed, which during 42 days consumed pure water without any restrictions; 1% aqueous solution of glyphosate; 1% solution of glyphosate in combination with 1% solution of sodium benzoate; 1% solution of glyphosate with 1% solution of saccharin. After killing the animals, 1 g of feces were collected and by serial dilutions with 10–1 to 10–9 sterile physiologic solution, a microbiological analysis was undertaken. Out of each dilution an inoculation of the studied material to the elective growth media was performed, by 0.1 cm3, then the material was incubated in a thermostat (24–72 hours, temperature 37 °С), the results were recorded after 24–72 h. The microorganisms were identified by studying morphological parameters, tinctorial, cultural and enzymic properties. Results are provided in CFU/g (colony-forming unit per gramm) of feces. The impact of glyphosate and glyphosate with food additives led to no changes in the number of Escherichia coli and emergence of this species of microorganism with changed enzymic activity. Also no changes occurred in the number of microorganisms of Bifidobactrium and Lactobacillus spp. Addition of glyphosate, and also glyphosate in combination with saccharin to the diet contributes to broader reproduction of microorganisms of Klebsiella, Citrobacter, Enterobacter and Pseudomonas genera. Mixtures of glyphosate and food additives allow conditionally pathogenic yeast-like Candida fungi (Candida glabrata and C. albicans) to spread more widely in the intestine. Significant fluctuations in the number of Enterococcus spp. bacteria genus were observed: by 80 times within range of each of the three experimental groups of rats with addition of herbicide with benzoate and saccharin to the diet.


2020 ◽  
Vol 13 ◽  
pp. 14-30 ◽  
Author(s):  
Eman Hashem Radwan ◽  
MM Elghazaly ◽  
KK Abdel Aziz ◽  
AI Barakat ◽  
H Kh Hussein

Common food additives endorsed by Food and drug Organization "FDA" are utilized to preserve taste. The display think about examined the perilous impacts of sodium nitrite, sodium benzoate and their blend which utilized in fabricating of the food additives on a few biochemical parameters and  histo-pathological examination in male rats. Male rats were divided into four groups; group I utilized as control, group II and III were treated orally with sodium nitrite NaNO2 (80 mg/kg BW) and sodium benzoate (SB) (200 mg/kg BW), separately. Group IV was treated orally with the blend of sodium nitrite and sodium benzoate. Rats were managed their dosages each day for 8 weeks. It appeared that sodium nitrite, sodium benzoate and their blend (NaNO2 and SB) initiated a critical increment within the serum levels of aspartate aminotransferase "AST", alanine aminotransferase "ALT". Antioxidant proteins (GSH, CAT) within the liver tissue recorded a decrease while, MDA recorded an increase action level within the tested groups. Over expression in p53 happened in exploratory groups which were treated by NaNO2, SB and their blend. The present study concluded that the blend of food additives can actuate harmfulness within the liver of rats. In conclusion, it is noted that food additives induced hepatotoxicity within the liver. It diminished the antioxidant chemicals (GSH, CAT) and elevated the activity level of the MDA and increment tumor silencer quality p53 in liver tissue. Food additive substances caused changes in biochemical parameters (ALT, AST). The utilization of food additives must be diminished. The usage of the mixture of sodium nitrite and sodium benzoate induced changes in biochemical parameters and immune-histopathology.    


2021 ◽  
Vol 10 (4) ◽  
pp. 155-165
Author(s):  
A. V. Bunjat ◽  
O. M. Spasenkova ◽  
V. E. Karev ◽  
A. V. Karavaeva ◽  
D. Ju. Ivkin ◽  
...  

Introduction. Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the world, and non-alcoholic steatohepatitis is the second most common cause of liver transplantation in the adult population. An urgent task is to find and develop an optimal model of NAFLD in laboratory animals, which would reproduce all the features of this disease in the clinic.Aim. Modification of the NAFLD model in laboratory animals (rats), which allows the obtained data to be transmitted to humans as fully as possible.Materials and methods. The study was conducted on 52 outbred white male rats of the same age. As the basis of the model, a hypercaloric high-fat diet was used with the addition of food appeal enhancers (sodium glutamate and liquid shrimp extract) and for the first-time conditions of hypodynamia were used – restriction of the motor activity of animals using specially designed cells, in which an individual 11 × 18 cm cell was allocated for each individual. The duration of the study was 12 months. In the course of the experiment, body weight, physical performance, biochemical parameters of blood serum and urine in dynamics were assessed, and lethality was recorded. After the end of the study, the mass of internal organs, visceral and epididymal fat was analyzed, and a histological examination of the liver was performed.Results and discussion. In the course of the experimental study, the development of NAFLD in rats of the control group of animals was histologically confirmed. A high mortality rate was revealed in the group of animals with pathology. Compared with animals of the intact group, a statistically significant increase in their body weight, liver weight, visceral and epididymal fat, a decrease in physical performance, disturbances in lipid, carbohydrate and protein metabolism were revealed, as well as signs of deterioration of the protein synthesis and excretory functions of the liver.Conclusion. A number of advantages of the NAFLD model with a combination of a hypercaloric diet and hypodynamic conditions were revealed, including the similarity of the conditions for the formation and pathogenesis of the disease in experimental animals and humans, which ensures the adequacy of data translation from preclinical practice to clinical practice.


2019 ◽  
Vol 10 (1) ◽  
pp. 50-55 ◽  
Author(s):  
M. A. Lieshchova ◽  
V. V. Brygadyrenko ◽  
N. M. Tishkina ◽  
P. M. Gavrilin ◽  
A. A. Bohomaz

Goods of plastic, due to their durability, universality and economical properties are broadly used in all spheres of life. On the whole, polymers are inert and nontoxic, but in the process of their production, various additives are used, which on contact or introduction into an organism has a negative effect on it. In our study, we determined the impact of some types of plastic (polyvinyl chloride, polysterene and polyethylene) on the organism of laboratory animals according to changes in their body weight, indices of mass of the internal organs, and blood parameters. For the experiment, we formed four groups of white male mice at the age of 3 weeks and average body weight of 50 g. For each group, we used different litter. For group I, the litter was sawdust; and for the other groups we added plastic products in different volumes to the sawdust; for group II finely cut polyvinyl chloride, for group III cut polyethylene, and for group IV granules of polystyrene. Every 3 days, we determined the body weight of the animals, and 32 days later we determined mass of the organs, clinical and biochemical parameters of the blood. Addition of polyvinyl chloride, polyethylene, and polystyrene into the substrate for mice did not have a significant effect on tempi of growth of body weight, and also relative mass of heart and lungs. Polyvinyl chloride and polystyrene have an immune-suppressive effect, and polyvinyl chloride affects both central and peripheral organs, and polystyrene mostly harms the peripheral organs. All used types of plastic cause leukocytopenia, following which neutrophilia of band neutrophils and monocytosis takes place as a result of damage to the biological barriers. We determined the systemic toxic effect of the studied types of plastic on the internal organs, which manifested in increase in their mass (liver, kidneys), steep increase in the activity of liver enzymes (AST, ALT), simultaneous decrease in activity of alkaline phosphatase and content of cholysterol and glucose in the blood serum of the mice. Also polyvinyl chlorine, polyethylene and polystyrene cause degeneration of the epithelium of the uriniferous tubule, which is manifested in reduction of globulins and creatinine in the blood of animals from the experimental groups following increase in relative mass of the kidneys. The results of our research allow us to state that different types of plastic can cause toxic effect on animals, as well as people who are in frequent contact with them.


2021 ◽  
Vol 12 (1) ◽  
pp. 169-180
Author(s):  
M. A. Lieshchova ◽  
V. V. Brygadyrenko

Plant food additives are becoming more and more popular and broadly applied products, though the information on risks they poses to the organism is limited and contradictive. Obesity and overeating are some of the commonest health issues around the world, and people are increasingly consuming workability-enhancing preparations as a simple and fast method of weight control. The plant-based preparations are considered less harmful than the synthetic chemical ones. Lavandula angustifolia Mill., Melissa officinalis L. and Vitex angus-castus L. are broadly used as food additives and medicinal plants, despite the fact that their complex physiological assessment on model animals in the conditions of obesity has not yet been performed. We carried out a 30-day experiment on white male rats. All the animals were given high-fat diet, and the experimental animals, in addition to this diet, received 5% crumbled dry herbs of L. angustifolia, M. officinalis or V. angus-castus. Taking into account the overall amount of consumed food, the mean daily gain in body weight; at the end of the experiment, we determined the index of the weight of the internal organs, biochemical and morphological blood parameters. At the beginning and the end of the experiment, the rats were examined for motor and orienting activities, and emotional status. Rats on high-fat diet gained up to 112% body weight by the end of the experiment, while rats that had received V. angus-castus gained up to 119%, M. officinalis – 135%, L. angustifolia – 139%, compared with the initial body weight. Addition of medicinal plants to the diet led to increase in average daily weight increment, significantly and reliably after consuming lavender and lemon balm, less significantly and unreliably after eating Vitex. L. angustifolia and M. officinalis reduced the relative brain weight, and ingestion of L. angustifolia and M. officinalis caused notable decrease in the relative mass of the thymus (down to 58% and 47% of the relative weight of thymus in animals of the control group respectively). Also, these plants decreased the motor and orienting activities of the rats by the end of the experiment. As for the biochemical parameters of blood, the activity of alkaline phosphatase significantly increased to 406% following consumption of Melissa, to 350% after consuming lavender, and to 406% after Vitex, compared to the control group. Furthermore, all the groups were observed to have increased AST and ALT activities. Intake of lavender led to increases in cholesterol (to 125%) and LDL cholesterol (to 228%), whereas the groups that consumed lemon balm were observed to have decreases in urea nitrogen (to 79%), totalbilirubin (to 63%) and triglycerides (to 63%). Addition of Vitex led to increase in the index of aterogenecity against the background of notable fall in HDL cholesterol (to 52% of the control group). The medicinal plants also contributed to the normalization of the glucose level. Morphological analysis of blood revealed no significant changes, except heightened content of monocytes in blood, which is characteristic of all groups, including the control. Effects of L. angustifolia, M. officinalis and V. angus-castus on the organism of rats on excessive-fat diet require additional histological, histochemical and immunological surveys.


2020 ◽  
pp. 39-45
Author(s):  
Belykh

The acute skin toxicity characteristics of the drug for veterinary use “Inspector Mini” were studied at mice and rats. The active ingredient of the drug is moxidectin which belongs to the group of macrocyclic lactones of the milbemycin class. The studies were carried out in the vivarium of VNIIP – FSC VIEV (Moscow, Russia) on 2 experimental and 1 control groups of white outbred male mice of 19–21 g, 10 animals in each group and male rats of 200–230 g, 6 individuals in each. The mass of animals was indicated during application of the drug. The drug was used once without dilution in the form of the provided solution with single-channel mechanical dispensers with a dosing volume of 10–100 μl for mice and 100–1000 μl for rats. The animals in the experimental group 1 were treated at a dose of 10 400 mg/kg (100 μl per 10 g of mouse body weight or 1000 μl per 100 g of rat body weight), animals in the experimental group 2 – at a dose of 5 200 mg/kg (50 μl per 10 g of mouse body weight or 500 μl per 100 g of rat body weight). The animals in control group were not treat with the drug. As a result of the study, it was found that the LD50 of the drug “Inspector Mini” applied to the skin of mice and rats was more than 10 400 mg/kg per animal weight. During clinical examination of laboratory animals from the experimental groups, no signs of intoxication were observed. During the experiment, there was no significant difference (p ≥ 0.05) in the animals weight from the experimental groups within all periods of weighing compared with the control group of analogues.


2021 ◽  
pp. 096032712110134
Author(s):  
O Zouaoui ◽  
K Adouni ◽  
A Jelled ◽  
A Thouri ◽  
A Ben Chrifa ◽  
...  

Phytochemical composition and antioxidant activity of flowers decoction at post-flowering stage (F3D) of Opuntia dejecta were determined. The obtained findings demonstrate that F3D has a marked antioxidant activity in all tested assays. Furthermore, the present study was designed to test the protective activity of F3D against induced Diabetes type 2 (DT2) in male rats. Those metabolic syndromes were induced by a high-fructose diet (HFD) (10% fructose solution) for a period of 20 weeks. F3D was administered orally (100 and 300 mg/kg body weight) daily for the last 4 weeks. Metformin (150 mg/kg body weight) was used as a standard drug and administrated orally for the last 4 weeks. The results showed a significant increase in blood glucose, triglycerides and hepatic markers (ALAT, ASAT and ALK-P) in HFD group. A significant increase in hepatic TBARS and a significant decrease in SOD, CAT and GPX were observed in fructose fed rats compared to control group. Administration of F3D showed a protective effect in biochemical and oxidative stress parameters measured in this study. Also, oral administration of F3D restored the histological architecture of rat liver in comparison with rats fed HFD. In conclusion, F3D attenuated hepatic oxidative stress in fructose-fed rats.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Murtala Akanji Abdullahi ◽  
Elijah Oladapo Oyinloye ◽  
Akinyinka Alabi ◽  
Aderonke Adeyinka Aderinola ◽  
Luqman Opeyemi Ogunjimi ◽  
...  

Abstract Objectives Several studies have established the ethnobotanical benefits of Pupalia lappacea (PL) in laboratory animals without extensive toxicological evaluation of its safety profiles. Thus, an extensive toxicological investigation of sub-chronic oral administration of the hydroethanol leaf extract of P. lappacea in rodents was carried out in this study. Methods Different groups of rats were treated orally with the extract (10, 50 and 250 mg/kg) daily for 90 consecutive days. The control group received distilled water (10 mL/kg). After 90 days, some rats were left for additional 30 days without treatment for reversibility study. Blood and organs samples were collected for different evaluations at the end of study periods. Results The extract decreased the bodyweights, feeding and water intakes in female rats. PL increased the weights of the liver and kidney in male rats. PL increased the red blood cell (RBC), packed cell volume (PCV), hemoglobin (Hb), triglycerides (TRIG), cholesterol and high density lipoprotein (HDL) contents in rats. PL (250 mg/kg) significantly reduced the sperm motility and serum testosterone level. Cyto-architectural distortions of the testes, liver and spleen were visible. Conclusions The findings showed that P. lappacea is relatively safe at lower doses but cautions should be taken at higher dose.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Nicolaas P. Pronk ◽  
A. Lauren Crain ◽  
Jeffrey J. VanWormer ◽  
Brian C. Martinson ◽  
Jackie L. Boucher ◽  
...  

Objective.To determine the accuracy of self-reported body weight prior to and following a weight loss intervention including daily self-weighing among obese employees.Methods.As part of a 6-month randomized controlled trial including a no-treatment control group, an intervention group received a series of coaching calls, daily self-weighing, and interactive telemonitoring. The primary outcome variable was the absolute discrepancy between self-reported and measured body weight at baseline and at 6 months. We used general linear mixed model regression to estimate changes and differences between study groups over time.Results.At baseline, study participants underreported their weight by an average of 2.06 (se=0.33) lbs. The intervention group self-reported a smaller absolute body weight discrepancy at followup than the control group.Conclusions.The discrepancy between self-reported and measured body weight appears to be relatively small, may be improved through daily self-monitoring using immediate-feedback telehealth technology, and negligibly impacts change in body weight.


Sign in / Sign up

Export Citation Format

Share Document