scholarly journals Specific anosmia in humans and animals: Environmental and genetic influences

2019 ◽  
Vol 9 (3) ◽  
pp. 52-59
Author(s):  
M. A. Klyuchnikova ◽  
V. V. Voznessenskaya

Olfaction plays a very important role across the lifespan of most mammalian species, including humans. Being the oldest, chemical communication is one of the least understood forms of communication due in part to the difficulty of detecting and measuring the chemicals in a sample. The ability to detect chemicals in the environment serves many functions. Individuals with specific anosmia, or “odor blindness”, have significantly increased olfactory thresholds to particular odorants though they show normal general olfactory acuity. Hereby we review research on specific anosmia in humans, factors that may affect individual variation in olfaction as well as animal models of specific anosmia. Variability in sensitivity to odorants is influenced by genotype, age, gender, individual olfactory experience and environmental cues. Large data pile from human and animal studies suggests that not all factors are determined yet. The possibility of induction of olfactory sensitivity to biologically relevant chemical cues is discussed. Olfactory plasticity determines the adaptability of the species to the environment. Mechanisms that underlie the induction of sensitivity to the odorants still to be elucidated.

2016 ◽  
Vol 283 (1839) ◽  
pp. 20161448 ◽  
Author(s):  
Taiping Gao ◽  
Chungkun Shih ◽  
Conrad C. Labandeira ◽  
Jorge A. Santiago-Blay ◽  
Yunzhi Yao ◽  
...  

Antennae are important, insect sensory organs that are used principally for communication with other insects and the detection of environmental cues. Some insects independently evolved ramified (branched) antennae, which house several types of sensilla for motion detection, sensing olfactory and chemical cues, and determining humidity and temperature levels. Though ramified antennae are common in living insects, occasionally they are present in the Mesozoic fossil record. Here, we present the first caddisflies with ramified antennae, the earliest known fossil sawfly, and a scorpionfly also with ramified antennae from the mid-Lower Cretaceous Yixian Formation of Northeastern China, dated at 125 million years ago (Ma). These three insect taxa with ramified antennae consist of three unrelated lineages and provide evidence for broad structural convergence that historically has been best demonstrated by features such as convergent mouthparts. In addition, ramified antennae in these Mid-Mesozoic lineages likely do not constitute a key innovation, as they are not associated with significantly increased diversification compared with closely related lineages lacking this trait, and nor are they ecologically isolated from numerous, co-occurring insect species with unmodified antennae.


2010 ◽  
Vol 23 (1) ◽  
pp. 4-22 ◽  
Author(s):  
Paul Guilloteau ◽  
Romuald Zabielski ◽  
Harald M. Hammon ◽  
Cornelia C. Metges

The consequences of early-life nutritional programming in man and other mammalian species have been studied chiefly at the metabolic level. Very few studies, if any, have been performed in the gastrointestinal tract (GIT) as the target organ, but extensive GIT studies are needed since the GIT plays a key role in nutrient supply and has an impact on functions of the entire organism. The possible deleterious effects of nutritional programming at the metabolic level were discovered following epidemiological studies in human subjects, and confirmed in animal models. Investigating the impact of programming on GIT structure and function would need appropriate animal models due to ethical restrictions in the use of human subjects. The aim of the present review is to discuss the use of pigs as an animal model as a compromise between ethically acceptable animal studies and the requirement of data which can be interpolated to the human situation. In nutritional programming studies, rodents are the most frequently used model for man, but GIT development and digestive function in rodents are considerably different from those in man. In that aspect, the pig GIT is much closer to the human than that of rodents. The swine species is closely comparable with man in many nutritional and digestive aspects, and thus provides ample opportunity to be used in investigations on the consequences of nutritional programming for the GIT. In particular, the ‘sow–piglets’ dyad could be a useful tool to simulate the ‘human mother–infant’ dyad in studies which examine short-, middle- and long-term effects and is suggested as the reference model.


2001 ◽  
Vol 79 (4) ◽  
pp. 297-302 ◽  
Author(s):  
R Boonstra ◽  
L Galea ◽  
S Matthews ◽  
J M Wojtowicz

The dogma that the adult brain produces no new neurons has been overturned, but the critics are still asking, so what? Is adult neurogenesis a biologically relevant phenomenon, or is it perhaps harmful because it disrupts the existing neuronal circuitry? Considering that the phenomenon is evolutionarily conserved in all mammalian species examined to date and that its relevance has been well documented in non-mammalian species, it seems self-evident that neurogenesis in adult mammals must have a role. In birds, it has been established that neurogenesis varies dramatically with seasonal changes in song production. In chickadees, the learning behaviour related to finding stored food is also correlated with seasonal adult neurogenesis. Such studies are still nonexistent in mammals, but the related evidence suggests that neurogenesis does vary seasonally in hamsters and shows sexual differences in meadow voles. To promote studies on natural populations asking fundamental questions of the purpose and function of neurogenesis, we organized a Workshop on "Hippocampal Neurogenesis in Natural Populations" in Toronto in May 2000. The Workshop highlighted recent discoveries in neurogenesis from the lab, and focused on its functional consequences. The consensus at the Workshop was that demonstration of a role for neurogenesis in natural behaviours will ultimately be essential if we are to understand the purpose and function of neurogenesis in humans.Key words: neurogenesis, hippocampus, dentate gyrus, learning, memory, wild population.


2019 ◽  
Vol 8 (7) ◽  
pp. 1061 ◽  
Author(s):  
Mohamed A. Hendaus ◽  
Fatima A. Jomha ◽  
Ahmed H. Alhammadi

Autism spectrum disorder (ASD) is a developmental disability described by diagnostic criteria that comprise deficits in social communication and the existence of repetitive, restricted patterns of behavior, interests, or activities that can last throughout life. Many preclinical studies show the importance of arginine vasopressin (AVP) physiology in social functioning in several mammalian species. Currently, there is a trend to investigate more specific pharmacological agents to improve social functioning in patients with ASD. Neurobiological systems that are crucial for social functioning are the most encouraging conceivable signaling pathways for ASD therapeutic discovery. The AVP signaling pathway is one of the most promising. The purpose of this commentary is to detail the evidence on the use of AVP as an agent that can improve social functioning. The pharmacologic aspects of the drug as well as its potential to ameliorate social functioning characteristics in human and animal studies are described in this manuscript. AVP, especially in its inhaled form, seems to be safe and beneficial in improving social functioning including in children with autism. Larger randomized studies are required to implement a long awaited safe and feasible treatment in people with a deficiency in social functioning.


2011 ◽  
Vol 278 (1717) ◽  
pp. 2477-2485 ◽  
Author(s):  
Tyler J. Stevenson ◽  
Gregory F. Ball

Seasonal breeding in the temperate zone is a dramatic example of a naturally occurring change in physiology and behaviour. Cues that predict periods of environmental amelioration favourable for breeding must be processed by the brain so that the appropriate responses in reproductive physiology can be implemented. The neural integration of several environmental cues converges on discrete hypothalamic neurons in order to regulate reproductive physiology. Gonadotrophin-releasing hormone-1 (GnRH1) and Kisspeptin (Kiss1) neurons in avian and mammalian species, respectively, show marked variation in expression that is positively associated with breeding state. We applied the constancy/contingency model of predictability to investigate how GnRH1 and Kiss1 integrate different environmental cues to regulate reproduction. We show that variation in GnRH1 from a highly seasonal avian species exhibits a predictive change that is primarily based on contingency information. Opportunistic species have low measures of predictability and exhibit a greater contribution of constancy information that is sex-dependent. In hamsters, Kiss1 exhibited a predictive change in expression that was predominantly contingency information and is anatomically localized. The model applied here provides a framework for studies geared towards determining the impact of variation in climate patterns to reproductive success in vertebrate species.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Walid M. Abdelmoula ◽  
Begona Gimenez-Cassina Lopez ◽  
Elizabeth C. Randall ◽  
Tina Kapur ◽  
Jann N. Sarkaria ◽  
...  

AbstractMass spectrometry imaging (MSI) is an emerging technology that holds potential for improving, biomarker discovery, metabolomics research, pharmaceutical applications and clinical diagnosis. Despite many solutions being developed, the large data size and high dimensional nature of MSI, especially 3D datasets, still pose computational and memory complexities that hinder accurate identification of biologically relevant molecular patterns. Moreover, the subjectivity in the selection of parameters for conventional pre-processing approaches can lead to bias. Therefore, we assess if a probabilistic generative model based on a fully connected variational autoencoder can be used for unsupervised analysis and peak learning of MSI data to uncover hidden structures. The resulting msiPL method learns and visualizes the underlying non-linear spectral manifold, revealing biologically relevant clusters of tissue anatomy in a mouse kidney and tumor heterogeneity in human prostatectomy tissue, colorectal carcinoma, and glioblastoma mouse model, with identification of underlying m/z peaks. The method is applied for the analysis of MSI datasets ranging from 3.3 to 78.9 GB, without prior pre-processing and peak picking, and acquired using different mass spectrometers at different centers.


2017 ◽  
Vol 20 (4) ◽  
pp. 1160-1166 ◽  
Author(s):  
Kazutaka Katoh ◽  
John Rozewicki ◽  
Kazunori D Yamada

Abstract This article describes several features in the MAFFT online service for multiple sequence alignment (MSA). As a result of recent advances in sequencing technologies, huge numbers of biological sequences are available and the need for MSAs with large numbers of sequences is increasing. To extract biologically relevant information from such data, sophistication of algorithms is necessary but not sufficient. Intuitive and interactive tools for experimental biologists to semiautomatically handle large data are becoming important. We are working on development of MAFFT toward these two directions. Here, we explain (i) the Web interface for recently developed options for large data and (ii) interactive usage to refine sequence data sets and MSAs.


2016 ◽  
Author(s):  
Anupama Yadav ◽  
Aparna Radhakrishnan ◽  
Anshuman Panda ◽  
Amartya Singh ◽  
Himanshu Sinha ◽  
...  

ABSTRACTThe ribosome is an ancient machine, performing the same function across organisms. Although functionally unitary, recent experiments suggest specialized roles for some ribosomal proteins. Our central thesis is that ribosomal proteins function in a modular fashion to decode genetic information in a context dependent manner. We show through large data analyses that although many ribosomal proteins are essential with consistent effect on growth in different conditions in yeast and similar expression across cell and tissue types in mice and humans, some ribosomal proteins are used in an environment specific manner. The latter set of variable ribosomal proteins further function in a coordinated manner forming modules, which are adapted to different environmental cues in different organisms. We show that these environment specific modules of ribosomal proteins in yeast have differential genetic interactions with other pathways and their 5’UTRs show differential signatures of selection in yeast strains, presumably to facilitate adaptation. Similarly, we show that in higher metazoans such as mice and humans, different modules of ribosomal proteins are expressed in different cell types and tissues. A clear example is nervous tissue that uses a ribosomal protein module distinct from the rest of the tissues in both mice and humans. Our results suggest a novel stratification of ribosomal proteins that could have played a role in adaptation, presumably to optimize translation for adaptation to diverse ecological niches and tissue microenvironments.


Physiology ◽  
2017 ◽  
Vol 32 (1) ◽  
pp. 51-59 ◽  
Author(s):  
Kathleen Jaeger ◽  
Jessica L. Saben ◽  
Kelle H. Moley

Recent human and animal studies investigating the roles of the genome, epigenome, and environmental cues have identified associations between offspring predisposition to life-long obesity/metabolic disease and epigenetic modifications such as DNA methylation. This review explores the mechanisms by which maternal exposures impair the health of not only the next generation but also potentially future generations of offspring.


Author(s):  
Christopher Pittenger ◽  
Stephanie Dulawa ◽  
Summer L. Thompson

Obsessive-compulsive disorder and related conditions are characterized by demonstrable alterations in brain function, and aspects of these may, in principle, be recapitulated and studied in animals. However, the relationship between animal models and the clinical syndrome is complex. Many clinical aspects of OCD, especially those that can only be evaluated by subjective report, cannot be assessed in an animal. As a result, some discount the utility of animal modeling of OCD altogether. However, conservation of both genes and brain anatomy across mammalian species supports the opposite perspective, that key aspects of the pathophysiology of OCD and related disorders can be recapitulated in animals, and thus fruitfully studied in model systems. This introductory chapter addresses these issues, seeking to identify both the strengths and the limitations of animal studies as contributors to our understanding of OCD. This discussion provides a framework for the more specific material about particular animal models presented in this section.


Sign in / Sign up

Export Citation Format

Share Document