scholarly journals Influence of high temperature on dairy productivity of Ukrainian Schwyz

2018 ◽  
Vol 20 (83) ◽  
pp. 97-101
Author(s):  
Т.О. Vasilenko ◽  
R.V. Milostiviy ◽  
О.О. Kalinichenko ◽  
G.S. Gutsulyak ◽  
E.M. Sazykina

In monitoring studies of recent years, global warming is reported. This is a significant problem for dairy farming in much of Europe, especially in the central and southern regions, as reported by numerous studies. Dairy cattle highly productive are extremely sensitive to hot temperatures; their consequence is health problems, a significant reduction in milk yield and milk quality. Unfortunately, heat stress remains an unrecognized problem for domestic cattle breeding, although the financial losses from its harmful influence in European are quite substantial. The aim of our work was to study the effect of high temperatures on milk yield of cows of Ukrainian Schwitz on one of the complexes of high-tech milk production. At the beginning of the research, we decided to test the hypothesis of increasing hot air temperatures in the warm period of the year compared with the long-term data. Then we studied how the milk of Schwitz breed varies during the hot season, depending on the magnitude of the maximum temperature values. According to the results of the study, it can be noted that the air temperature during the warm period of 2017 tended to increase (+0.6 °С) in comparison with the long-term data. In August, the air temperature significantly exceeded the long-term data by +3 °C (td = 2.89, P < 0.05). The relationship between the temperature and milk yield of cows is revealed by an average degree of reliability (r = -0.45, P < 0.05). Compared with the most favorable external conditions in May, the cows' milk yield decreased in June by 3.0%, the yield of milk fat by 5.2%, the milk protein content by 3.4% (P < 0.001). In July and August, the cows' milk yield decreased by 4.6 and 5.5% (P < 0.001), the yield of milk fat decreased by 3.1 and 7.3% (P < 0.01–0.001), the yield of milk protein 3.4 and 5.7% (P < 0.001). Thus, high temperatures during the summer period contributed to a decrease in milk yield and the main components of milk of the Ukrainian Schwitz, which can lead to tangible financial losses.

1996 ◽  
Vol 62 (1) ◽  
pp. 1-3 ◽  
Author(s):  
P. C. Garnsworthy

AbstractTwenty-eight Holstein/Friesian dairy cows were divided into four groups of seven. From weeks 4 to 15 of lactation they were given a basal diet consisting of 8 kg hay, 2 kg sugar-beet feed and 2 kg grass nuts, together with a concentrate allowance of 8 kg/day. Concentrates for group A were based on cereals and soya (control). Concentrate B contained 60 g protected fat supplement per kg; concentrate C contained 100 g lactose per kg; concentrate D contained 60 g fat supplement and 100 g lactose per kg. Milk yields were 24·6, 27·7, 25·6 and 26·5 kg/day and milk protein concentrations were 32·3, 30·7, 32·7 and 31·9 g/kg for groups A, B, C and D respectively. The effect of fat supplementation on milk yield and protein concentration was significant (P < 0·05) but the effect of lactose was not significant. Milk fat concentration was not significantly affected by treatment. It is concluded that lactose can partially alleviate the depression in milk protein concentration often observed when cows are given protected fat.


2008 ◽  
Vol 49 ◽  
pp. 7-10 ◽  
Author(s):  
Yukari Takeuchi ◽  
Yasoichi Endo ◽  
Shigeki Murakami

AbstractLong-term data of winter air temperature and precipitation were analyzed and the correlation between them investigated in order to identify the factors influencing snow reduction during the recent warmer winters in the heavy-snowfall areas in Japan. A high negative correlation between winter precipitation and air temperature was identified in the heavy-snowfall areas on the Sea of Japan side in the center of the main island (Honshu). It was confirmed that precipitation is mainly caused by cold winter monsoons, and thus correlates to a large extent with air temperature in these areas. The precipitation decrease can be considered an effective factor for the recent reduction in snow as well as the snowfall to precipitation ratio. This should be taken into account for a better prediction of snow reduction in relation to global warming.


2016 ◽  
Vol 19 (1-2) ◽  
pp. 50-65
Author(s):  
MA Baset ◽  
KS Huque ◽  
NR Sarker ◽  
MM Hossain ◽  
MN Islam

A total of 160 cows, 10 cows in each of native (local cow) and crossbred (local × Holstein Friesian) origins differing in lactation were used in 2×2×2×2 factorial experiment using Randomized Block Design (RBD) to evaluate milk yield and composition of cows considering regions (good & poor feed base region), seasons (dry: Nov.–Feb. 2009 & wet: Jun.–Oct. 2009), genotypes and lactation. A “good and/or poor feed base” region was classified based on the availability of quantity and quality roughages throughout the year. The study revealed that the daily milk yield and 4% FCM of cows under good feed base condition were 6.76 and 6.49 kg, respectively and under poor feed base condition were 3.67 and 3.31 kg, respectively. Feed base region did not affect on milk fat and it was observed that the milk protein, lactose, solids-not-fat (SNF), minerals and total solids under good feed base condition were 37.9, 54.9, 100.9, 6.3 and 140.6 g/kg, respectively, whereas, under poor feed base condition the values were 36.3, 52.9, 98.0, 6.1 and 135.2 g/kg, respectively. Season did not affect milk yield and composition except minerals (6.5 g/kg vs. 5.9 g/kg). Genotypes significantly (p?0.01) influenced daily milk yield, the milk protein and minerals. Lactation did not affect milk yield and the milk protein, but influenced the fat, lactose, SNF, minerals and total solids. The interaction of feed base regions and seasons significantly (p?0.01) influenced milk yield and the milk fat and SNF. The milk protein and lactose was influenced by the interaction of feed bases region, seasons and lactation. Milk yield negatively correlated with fat per cent. The percentage of fat significantly (p?0.01) correlated with protein, lactose, SNF, and minerals %. The percentage protein correlated with lactose, SNF and minerals. Lactose % significantly (p?0.01) correlated with SNF%. It may be concluded that milk yield and composition depends on feed base region, genotype and lactation of cows. Season did not influence milk yield and the composition. Milk yield negatively correlated with the percentage of fat, protein, lactose, SNF and milk composition strongly correlated with each other.Bangladesh J. of Livestock Res. 19(1-2): 50-65, Jan-Dec 2012


1990 ◽  
Vol 38 (3B) ◽  
pp. 487-498
Author(s):  
H. de Visser ◽  
P.L. van der Togt ◽  
S. Tamminga

A feeding trial was carried out with 64 multiparous dairy cows, in which the effect of type of carbohydrate in concentrate mixtures (starch vs. cell wall constituents) and differences in rumen degradation (fast vs. slow) on feed intake and milk yield were studied. The experiment started immediately after parturition and lasted for 15 wk. The basal diet, which comprised 75% of the total DM intake, consisted of wilted grass silage, maize silage and concentrates. The remaining part of the diet consisted of barley (B), maize (M), pressed ensiled beet pulp (P) or moist ensiled maize bran (MB). All diets were given as totally mixed rations. Total intake of DM and net energy did not differ between diets, but differences were found in energy partition. There was a tendency for cows given diet B to show increased liveweight gain, while cows given P mobilized more body reserves compared with the other treatments. Milk yield did not differ between diets, but milk fat content was higher for diet P. Milk protein content was higher for diets B and M compared with P and MB. The lower protein content of the milk of treatment P can be explained by a longer period of negative energy balance, while the lower milk protein in cows given diet MB probably resulted from reduced microbial protein synthesis. (Abstract retrieved from CAB Abstracts by CABI’s permission)


2019 ◽  
Vol 38 (03) ◽  
Author(s):  
Birhanu Tsegaw ◽  
Rita Singh Majumdar

Milk is produced by the mammary gland of mammals to feed their young ones. Milk is an important nutrient-rich beverage that benefits our health. This article aims to study the effect of Asparagus racemosus root powder on milk yield and milk composition. The experiment was performed to determine the milk yield and milk protein, fat, total milk solid, and milk acidity after using Asparagus racemosus as a food supplement. The animals were selected based on purposive sampling to select lactate buffalo to avoid or reduced the error. During the experiment, animals fed in three phases; control, treatment, and the residual phase. In control phase animal diet normal ration, whereas in the treatment phase, a buffalo was diet 120 gram of Asparagus racemosus root powder in addition to its normal diet per buffalo per day. While in the residual phase, the animal was diet only normal ration. Each phase has been 5 days. The Milk collected from lactating buffalo in three phases; control, treatment, and the residual period. Each period has been five day. We also measured milk yield per day per buffalo. About 50 ml of milk was collected from each five buffalo every morning for 15 days. The data was analyzed through one way ANOVA and T-test using the procedure of statistical software. The result indicates that the diet was statistically significant effecting on milk yield at 5% (0.0196), protein at 1% (0.0113) and fat at 1% (0.0007) while the insignificant effect on milk acidity p >30 (0.3909) and total solid p >80 (0.8904). Therefore, feeding Asparagus racemosus, positively affects milk yield and milk protein and milk fat content.


Author(s):  
Martin Skýpala ◽  
Gustav Chládek

Milk yield varies during lactation, following what is termed a lactation curve. ŽIŽLAVSKÝ and MIKŠÍK (1988) recorded changes in milk yield within a day, too. TEPLÝ et al. (1979) a KOUŘIMSKÁ et al. (2007) published variation within a day ± 1.10 kg in milk yield, ± 0.75 % in milk fat content and ± 0.20 % in milk protein content. Milk yield of cows can be expressed in many different ways, for instance, in kilograms per lactation or in kilograms per day. A practical parameter describing milk production is milk yield (kg) per milking.The object of experiment were 12 cows of Holstein cattle on the first lactation from the 100-day of lactation to 200-day of lactation. The samples of milk were collected from January to May 2007, once a month from the morning and evening milking (milking interval 12 h ± 15 min.). The following parameters were monitored: milk production – milk yield (kg), milk protein production (kg), milk fat production (kg); milk composition – milk protein content (%), milk fat content (%), lactose content (%), milk solids-not-fat content (%), milk total solids content (%); technological properties of milk – ti­tra­tab­le acidity (SH), active acidity (pH), rennet coagulation time (s), quality of curd (class) and somatic cell count as a parameter of udder health.Highly significant differences were found (P < 0.01) between morning milk yield (15.7 kg) and evening milk yield (13.8 kg), between morning milk protein production (0.51 kg) and evening milk protein production (0.45 kg) and between evening milk fat content (4.41 %) and morning milk fat content (3.95 %). A significant difference (P < 0.05) was found between morning milk total solids content (12.62 %) and evening milk total solids content (12.07 %). No significant differences were found between morning (M) and evening (E) values of the remaining parameters: milk fat production (M 0.62 kg; E 0.60 kg), milk protein content (M 3.24 %; E 3.27 %), milk lactose content (M 4.78 %; E 4.86 %), milk solids-not-fat content (M 7.69 %; E 7.71 %), somatic cell count (M 80 000/1 mL; E 101 000/1 mL), titratable aci­di­ty (M 7.75 SH; E 7.64 SH), active acidity (M pH 6.58; E pH 6.61), rennet coagulation time (M 189 s.; E 191 s.), quality of curd (M 1.60 class; E 1.57 class).


Author(s):  
Л.Р. ЗАГИДУЛЛИН ◽  
Р.Р. ШАЙДУЛЛИН ◽  
Т.М. АХМЕТОВ ◽  
С.В. ТЮЛЬКИН ◽  
А.Б. МОСКВИЧЕВА

Изучена взаимосвязь аллельных вариантов генов пролактина и соматотропина с показателями молочной продуктивности коров черно-пестрой породы по 1 и 3 лактации. У первотелок, как и у полновозрастных животных,  наиболее высокий удой (4642 и 6240 кг), количество молочного жира (174,1 и 215,0 кг) и молочного белка (149,0 и 182,5 кг) достигнуты в группе с генотипом PRL АА. По массовой доле жира и белка в молоке коровы с генотипом PRL ВВ достоверно превосходили животных с генотипом PRL АА на 0,12% (Р<0,05) и 0,05% (Р<0,05) соответственно. По гену соматотропина наибольший уровень молочной продуктивности выявлен у коров с генотипом GH LL при достоверном преимуществе над GH VV у первотелок по удою на 439 кг (Р<0,01), выходу молочного жира — на 13,6 кг (Р<0,001), выходу молочного белка — на 15,3 кг (Р<0,01). У полновозрастных коров превышение над остальными группами было только по удою — на 219—548 кг (Р<0,05). Наибольшая жирномолочность характерна животным с генотипом GH VV по 1 лактации — 3,83% и по 3 лактации — 3,82%, а лучшая белковомолочность — коровам, имеющим аллель V гена GH:  3,21 и 3,23% соответственно. Полученные данные свидетельствуют о более высоком уровне молочной продуктивности у коров с генотипом PRL АА и GH LL, но лучшая жирномолочность и белковомолочность отмечены у особей, имеющих в своем генотипе аллели В гена PRL и V гена GH. The interrelation of allelic variants of prolactin and somatotropin genes with indicators of milk productivity of black-and-white cows for the 1st and 3rd lactation was studied. The highest milk yield (4642 and 6240 kg) amount of milk fat (174.1 and 215.0 kg) and milk protein (149.0 and 182.5 kg) were in the group with the PRL AA genotype in first-calf heifers as well as in full-age animals. In terms of the mass fraction of fat and protein of milk, the cows with the PRL BB genotype significantly exceeded animals with the PRL AA genotype by 0.12% (P<0.05) and 0.05% (P<0.05), respectively. According to the somatotropin gene, the highest level of milk productivity was revealed in cows with the GH LL genotype with a significant advantage over GH VV in first-calf heifers in milk yield by 439 kg (P<0.01), milk fat yield by 13.6 kg (P<0.001), milk protein yield by 15.3 kg (P<0.01). The excess over the other groups in full-age cows was only in terms of milk yield that was by 219-548 kg (P<0.05). The highest protein content of milk is a characteristic of animals with the GH VV genotype, 3.83% is for the 1st lactation and 3.82% is for the 3rd lactation, and the best protein content of milk in cows with V allele of the GH gene is 3.21 and 3.23%, respectively. The obtained data  indicated a higher level of milk productivity in cows with the PRL AA and GH LL genotypes but the best fat and milk content was noted in cows with alleles B of the PRL gene and V of the GH gene in their genotype.


Animals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 57 ◽  
Author(s):  
Frank Dunshea ◽  
Kehinde Oluboyede ◽  
Kristy DiGiacomo ◽  
Brian Leury ◽  
Jeremy Cottrell

Betaine is an organic osmolyte sourced from sugar beet that accumulates in plant cells undergoing osmotic stress. Since the accumulation of betaine lowers the energy requirements of animals and, therefore, metabolic heat production, the aim of this experiment was to investigate if betaine supplementation improved milk yield in grazing dairy cows in summer. One hundred and eighteen Friesian × Holstein cows were paired on days in milk and, within each pair, randomly allocated to a containing treatment of either 0 or 2 g/kg natural betaine in their concentrate ration for approximately 3 weeks during February/March 2015 (summer in Australia). The mean maximum February temperature was 30 °C. Cows were allocated approximately 14 kg dry matter pasture and 7.5 kg of concentrate pellets (fed in the milking shed) per cow per day and were milked through an automatic milking system three times per day. Betaine supplementation increased average daily milk yield by over 6% (22.0 vs. 23.4 kg/day, p < 0.001) with the response increasing as the study progressed as indicated by the interaction (p < 0.001) between betaine and day. Milk fat % (p = 0.87), milk protein % (p = 0.90), and milk somatic cell count (p = 0.81) were unchanged by dietary betaine. However, betaine supplementation increased milk protein yield (677 vs. 719 g/day, p < 0.001) and fat yield (874 vs. 922 g/day, p < 0.001) with responses again being more pronounced as the study progressed. In conclusion, dietary betaine supplementation increased milk and component yield during summer in grazing dairy cows.


Author(s):  
A Gavelis ◽  
V. Þilaitis ◽  
A Juozaitis ◽  
V. Juozaitienë ◽  
G. Urbonavièius ◽  
...  

The aim of this study was to evaluate relationship between milk progesterone concentration (P4) and milk traits at the start of estrus time and 12h after start of the estrus in dairy cows. The 96 milk samples of 48 Lithuanian dairy cows without reproduction disorders and 90–100 days after calving were evaluated. Cows were classified into two groups based on milk yield per day: less than 30 kg (n=20) and e”30 kg (n=28). Data were categorized by milk fat and protein content at the start estrus and 12h after start of estrus to evaluate relationship between P4 and milk traits examined. P4 at estrus time in dairy cows was significantly positively correlated with milk yield (P less than 0.001), whereas it was negatively correlated with milk protein (P less than 0.05-P less than 0.01) and fat at 12h after start of estrus. Dairy cows with F/P from 1.0 to 1.5 had the lowest P4 in milk. Results of the pregnancy in dairy cows were related with lower P4 and milk yield level (P less than 0.001), higher milk fat (P less than 0.05) and milk protein content (P less than 0.001). These cows had 1.90 times lower prevalence of the signs of subclinical ketosis (P less than 0.05) at estrus time when compared with non-pregnant cows. As a result, it was clearly demonstrated that P4 in dairy cows can help to evaluate and improve the reproductive properties of cows.


1995 ◽  
Vol 60 (2) ◽  
pp. 169-175 ◽  
Author(s):  
E. A. Mukisira ◽  
L. E. Phillip ◽  
B. N. Mitaru

AbstractThe study determined the effects of partial removal of alkaloids (detoxification) in crushed lupin seed (CLS) on voluntary food intake, and yield and composition of milk from dairy cattle. Twenty multiparous Friesian dairy cows (first 90 days of lactation) were assigned, according to a randomized complete-block design, to five diets. The diets were formulated to be isonitrogenous (25·6 g N per kg of diet dry matter (DM)) and contained napier grass, lucerne hay, maize bran and urea. The control diet (CON) contained sunflower meal; two diets contained intact CLS at 150 (LUI-15) or 300 g (LUl-30) per kg diet DM. The other two diets contained detoxified CLS at 150 (LUD-15) or 300 g (LUD-30) per kg diet DM. Lupin seeds were detoxified by treatment with boiling water, followed by steeping in cold water. The diets were analysed by gas chromatography for the alkaloids, lupanine and 13-hydroxylupanine. The total alkaloid content of LUI-15 and LUl-30 was 3·8 and 8·0 g/kg diet DM, respectively; by contrast that of LUD-15 and LUD-30 was 2·1 and 5·2 g/kg diet DM respectively. Increasing the level of intact CLS in the diet led to a decrease in voluntary food intake. Cows given LUl-30 had a lower milk yield (11·1 kg/day) than those given LUI-15 (13·8 kg/day;P< 0·01) but there was no difference in either milk protein yield or content. Detoxification of lupin removed proportionately about 0·40 of the total alkaloids from intact CLS and increased food intake, and the yield of milk and milk protein (P< 0·05) but reduced milk fat content. Detoxification of CLS also reduced the rumen degradability of lupin protein (P< 0·05). It is concluded that the reduction in organic matter intake and milk yield of cows given diets containing intact CLS was due to the presence of lupanine and 13-hydroxylupanine. To maximize its usage in diets for dairy cattle, lupin should be detoxified; it can then be included at levels up to 300 g/kg diet DM.


Sign in / Sign up

Export Citation Format

Share Document