scholarly journals Critically important antimicrobial preparations for veterinary medicine

2018 ◽  
Vol 20 (87) ◽  
pp. 19-26 ◽  
Author(s):  
T.I. Stetsko ◽  
V.P. Muzyka ◽  
V.M. Hunchak

The resistance of microorganisms, bacterial pathogens, to antimicrobials is a global problem in both healthcare and veterinary medicine. It is believed that the main reason for the emergence and spread of antimicrobial resistance in humans is the transfer of antibiotic resistant strains of microorganisms or genes, determinants of resistance, through products of animal origin from productive animals to humans. Thus, the main way of antimicrobial resistance containment is to restrain and minimize it through the prudent use of antibiotics in veterinary medicine, especially those that are critically important for productive animals. In addition, some classes of antibacterial substances and antibiotics, that are widely used in humane medicine, are used in veterinary medicine. The need to use and preserve these important therapeutic agents is relevant from the point of view of the concept «One Health». The article provides a list of all antibacterial substances used by productive animals for their importance in veterinary medicine, developed by a special group of experts of the World Organisation for Animal Health (OIE). Any antimicrobial agent authorized for use in veterinary medicine for productive animals, in accordance with the criteria for quality, safety and efficacy as defined in Section 6.9 of the Terrestrial Animal Health Code, is considered to be important for veterinary medicine. All the antimicrobial substances used for productive animals are divided in this list on critical, very important and important for veterinary medicine. Attention was also drawn to the peculiarities of the use of critical antimicrobial agents in veterinary medicine, especially those recognized as critical in humane medicine. These include aminoglycosides, cephalosporins of the 3rd and 4th generation, fluoroquinolones, glycopeptides, macrolides, some penicillins and polymyxins. The article also describes the classification of critical antimicrobials by the European Medicines Agency (EMA) and the Panel of Experts on Antimicrobials (AMEG) of the WHO based on the risk profile for humans through the development of antimicrobial resistance after application to productive animals. Such an assessment will give veterinary practitioners an important justification when they make decisions about the clinical treatment of bacterial infections and the responsible appointment of antimicrobial therapy. This will help to reach the balance among the achievement of the effectiveness of antimicrobial therapy of productive animals, reducing of the selective pressure on the development of antibiotic resistance and ensuring of a high level of human health.

2010 ◽  
Vol 64 (3-4) ◽  
pp. 277-285
Author(s):  
Maja Velhner ◽  
Gordana Kozoderovic ◽  
Zora Jelesic ◽  
Igor Stojanov ◽  
Radomir Ratajac ◽  
...  

Quinolone antibiotics have been widely used in human and veterinary medicine. This has caused the development of resistance and difficulties in the treatment of complicated bacterial infections in humans. The resistance to quinolones develops due to chromosome mutations and it can also be transferred by plasmids. The target enzyme for quinolones in Gram-negative bacteria is Gyrasa A, while the target enzyme in Grampositive bacteria is mostly topoisomerase IV. Gyrase A consists of two subunits encoded by genes gyrA and gyrB. The function of the enzyme is to introduce negative super coiling in DNA and therefore is essential for the replication of bacteria. Quinolone resistance develops if point mutations at 83 and/or 87 codon are introduced on gyrA. Establishing a minimal inhibitory concentration (MIC) to this group of antimicrobials will reveal possible mutations. Recently it was discovered that quinolone resistance is transmittable by plasmid termed PMQR (plasmid mediated quinolone resistance). The target gene marked qnr encodes a pentapeptide repeat family protein. Pentapeptide repeats form sheets, involved in protein-protein interactions. Qnr protein binds to GyrA protecting the enzyme from the inhibitory effect of ciprofloxacin. The distribution of qnr related resistance is higher in humans than in animals. In poultry, however, this type of resistance is present more than in other animals. Plasmid mediated resistance contributes to the faster spread of quinolone resistance. Proper food handling will significantly contribute to decreasing the risk from infection to which people are exposed. In medical and veterinary laboratories antimicrobial resistance monitoring in clinical and environmental isolates is advised. Since correlation between antibiotics application and antimicrobial resistance is often suggested, antimicrobial use must be under strict control of the authorities both in human and in veterinary medicine. .


2003 ◽  
Vol 22 (2) ◽  
pp. 135-143 ◽  
Author(s):  
Patrick F. Mc Dermott ◽  
Robert D. Walker ◽  
David G. White

After six decades of widespread antibiotic use, bacterial pathogens of human and animal origin are becoming increasingly resistant to many antimicrobial agents. Antimicrobial resistance develops through a limited number of mechanisms: (a) permeability changes in the bacterial cell wall/membrane, which restrict antimicrobial access to target sites; (b) active efflux of the antimicrobial from the cell; (c) mutation in the target site; (d) enzymatic modification or degradation of the antimicrobial; and (e) acquisition of alternative metabolic pathways to those inhibited by the drug. Numerous bacterial antimicrobial resistance phenotypes result from the acquisition of external genes that may provide resistance to an entire class of antimicrobials. These genes are frequently associated with large transferable extrachromosomal DNA elements called plasmids, on which may be other mobile DNA elements such as transposons and integrons. An array of different resistance genes may accumulate on a single mobile element, presenting a situation in which multiple antibiotic resistance can be acquired via a single genetic event. The versatility of bacterial populations in adapting to toxic environments, along with their facility in exchanging DNA, signifies that antibiotic resistance is an inevitable biological phenomenon that will likely continue to be a chronic medical problem. Successful management of current antimicrobials, and the continued development of new ones, is vital to protecting human and animal health against bacterial pathogens.


2020 ◽  
Vol 8 (3) ◽  
pp. 226-236
Author(s):  
T. I. Stetsko ◽  
V. P. Muzyka ◽  
M. R. Kozak

Antimicrobial resistance poses a significant risk to animal health by reducing the effectiveness of the treatment and prevention of many infections caused by bacteria. Antibiotic resistance threatens human health by transmitting resistant strains of microorganisms or resistance genes from animals to humans through the food chain. Life-threatening infections that were previously manageable can become incurable through antimicrobial resistance. Antimicrobial resistance can be divided into two main types: natural and acquired. Natural bacterial resistance is associated with the absence or inaccessibility of target cites for the action of certain antimicrobial agents. The acquired resistance is specific and associated with the acquisition of extraneous resistance genes or mutational modification of chromosomal target genes. The resistance of bacteria to antimicrobial drugs varies depending on the antimicrobial agent, species or genus of bacteria, and the mechanism of resistance. Resistance to the same antimicrobial agent can be mediated by different resistance mechanisms. In some cases, the same resistance gene or mechanism are related to a wide variety of bacteria, whereas in other cases, resistance genes or mechanisms are restricted to certain bacterial species or genera. Bacterial resistance to different classes of antibiotics with common mechanisms often leads to the multidrug resistance. The data presented in this review focuses exclusively on the resistance genes and mechanisms found in bacteria of animal origin and on antimicrobials used in the veterinary medicine. For better coverage of the topic, information on the mechanisms of resistance is presented separately for each class of antimicrobial agents.


Antibiotics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 104
Author(s):  
James V. Rogers ◽  
Veronica L. Hall ◽  
Charles C. McOsker

Antimicrobial resistance (AMR) is a concerning global threat that, if not addressed, could lead to increases in morbidity and mortality, coupled with societal and financial burdens. The emergence of AMR bacteria can be attributed, in part, to the decreased development of new antibiotics, increased misuse and overuse of existing antibiotics, and inadequate treatment options for biofilms formed during bacterial infections. Biofilms are complex microbiomes enshrouded in a self-produced extracellular polymeric substance (EPS) that is a primary defense mechanism of the resident microorganisms against antimicrobial agents and the host immune system. In addition to the physical protective EPS barrier, biofilm-resident bacteria exhibit tolerance mechanisms enabling persistence and the establishment of recurrent infections. As current antibiotics and therapeutics are becoming less effective in combating AMR, new innovative technologies are needed to address the growing AMR threat. This perspective article highlights such a product, CMTX-101, a humanized monoclonal antibody that targets a universal component of bacterial biofilms, leading to pathogen-agnostic rapid biofilm collapse and engaging three modes of action—the sensitization of bacteria to antibiotics, host immune enablement, and the suppression of site-specific tissue inflammation. CMTX-101 is a new tool used to enhance the effectiveness of existing, relatively inexpensive first-line antibiotics to fight infections while promoting antimicrobial stewardship.


2020 ◽  
Vol 83 (12) ◽  
pp. 2179-2186
Author(s):  
ALAN GUTIERREZ ◽  
JAYSANKAR DE ◽  
KEITH R. SCHNEIDER

ABSTRACT For over a decade, Salmonella contamination has increasingly led to outbreaks of foodborne illness associated with fresh produce. The use of untreated animal manures, or biological soil amendments of animal origin, to amend agricultural soils holds a risk of contamination from foodborne pathogens, such as Salmonella. This study was conducted to determine the prevalence, concentration, serotypes, and antimicrobial resistance profiles of Salmonella in poultry litter from Florida farms. Litter pH, total Kjeldahl nitrogen, total ammonia nitrogen, total phosphorus (P2O5), total potassium (K2O), moisture content, total solids, total ash, organic matter, and aerobic plate count (APC) were also measured. Litter samples (n = 54) were collected from 18 broiler farms across three seasons (spring, summer, and winter). Salmonella concentrations were enumerated using a most-probable-number (MPN) method, and antimicrobial susceptibility testing was performed. The prevalence of Salmonella in litter samples was 61.1%, with a geometric mean of 0.21 ± 20.7 MPN/g. Across all seasons, Salmonella concentrations were not influenced by the chemical, physical, or microbial properties measured. Recovered Salmonella isolates (n = 290) were grouped into serogroups O:4 (43.1%), O:7 (26.9%), O:8 (11.0%), O:1,3,10,19 (7.9%), and O:9,46 (7.2%). Serotyping Salmonella isolates (n = 47) resulted in 12 serotypes, with the most common being Typhimurium (27.7%), Kentucky (17.0%), Enteritidis (14.9%), and Mbandaka (14.9%). Antimicrobial resistance to tetracycline (29.8%), sulfisoxazole (23.4%), and streptomycin (14.9%) was observed. No isolates were resistant to more than two antimicrobial agents. This study provides valuable information for future risk assessments for the use of poultry litter as an untreated biological soil amendment of animal origin. HIGHLIGHTS


2001 ◽  
Vol 20 (3) ◽  
pp. 829-839 ◽  
Author(s):  
F. ANTHONY ◽  
J. ACAR ◽  
A. FRANKLIN ◽  
R. GUPTA ◽  
T.J. NICHOLLS ◽  
...  

2009 ◽  
Vol 72 (5) ◽  
pp. 1082-1088 ◽  
Author(s):  
AHLEM JOUINI ◽  
KARIM BEN SLAMA ◽  
YOLANDA SÁENZ ◽  
NAOUEL KLIBI ◽  
DANIELA COSTA ◽  
...  

Phenotypic and genotypic characterization of antimicrobial resistance was conducted for 98 Escherichia coli isolates recovered from 40 food samples of animal origin (poultry, sheep, beef, fish, and others) obtained in supermarkets and local butcheries in Tunis during 2004 and 2005. Susceptibility to 15 antimicrobial agents was tested by disk diffusion and agar dilution methods, the mechanisms of resistance were evaluated using PCR and sequencing methods, and the clonal relationship among isolates was evaluated using pulsed-field gel electrophoresis. High resistance was detected to tetracycline, sulphonamides, nalidixic acid, ampicillin, streptomycin, and trimethoprim-sulfamethoxazole (29 to 43% of isolates), but all isolates were susceptible to cefotaxime, ceftazidime, cefoxitin, azthreonam, and amikacin. One-third of the isolates had multiresistant phenotypes (resistance to at least five different families of antimicrobial agents). Different variants of blaTEM, tet, sul, dfrA, aadA, and aac(3) genes were detected in most of the strains resistant to ampicillin, tetracycline, sulphonamide, trimethoprim, streptomycin, and gentamicin, respectively. The presence of class 1 and class 2 integrons was studied in 15 sulphonamide-resistant unrelated E. coli strains, and 14 of these strains harbored class 1 integrons with five different arrangements of gene cassettes, and a class 2 integron with the dfrA1 + sat + aadA1 arrangement was found in one strain. This study revealed the high diversity of antimicrobial resistance genes, some of them included in integrons, in E. coli isolates of food origin.


2017 ◽  
Vol 61 (1) ◽  
pp. 61-70 ◽  
Author(s):  
Katharina Richter ◽  
Freija Van den Driessche ◽  
Tom Coenye

Many bacterial infections in humans and animals are caused by bacteria residing in biofilms, complex communities of attached organisms embedded in an extracellular matrix. One of the key properties of microorganisms residing in a biofilm is decreased susceptibility towards antimicrobial agents. This decreased susceptibility, together with conventional mechanisms leading to antimicrobial resistance, makes biofilm-related infections increasingly difficult to treat and alternative antibiofilm strategies are urgently required. In this review, we present three such strategies to combat biofilm-related infections with the important human pathogen Staphylococcus aureus: (i) targeting the bacterial communication system with quorum sensing (QS) inhibitors, (ii) a ‘Trojan Horse’ strategy to disturb iron metabolism by using gallium-based therapeutics and (iii) the use of ‘non-antibiotics’ with antibiofilm activity identified through screening of repurposing libraries.


mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Roderick M. Card ◽  
Shaun A. Cawthraw ◽  
Javier Nunez-Garcia ◽  
Richard J. Ellis ◽  
Gemma Kay ◽  
...  

ABSTRACT The chicken gastrointestinal tract is richly populated by commensal bacteria that fulfill various beneficial roles for the host, including helping to resist colonization by pathogens. It can also facilitate the conjugative transfer of multidrug resistance (MDR) plasmids between commensal and pathogenic bacteria which is a significant public and animal health concern as it may affect our ability to treat bacterial infections. We used an in vitro chemostat system to approximate the chicken cecal microbiota, simulate colonization by an MDR Salmonella pathogen, and examine the dynamics of transfer of its MDR plasmid harboring several genes, including the extended-spectrum beta-lactamase bla CTX-M1. We also evaluated the impact of cefotaxime administration on plasmid transfer and microbial diversity. Bacterial community profiles obtained by culture-independent methods showed that Salmonella inoculation resulted in no significant changes to bacterial community alpha diversity and beta diversity, whereas administration of cefotaxime caused significant alterations to both measures of diversity, which largely recovered. MDR plasmid transfer from Salmonella to commensal Escherichia coli was demonstrated by PCR and whole-genome sequencing of isolates purified from agar plates containing cefotaxime. Transfer occurred to seven E. coli sequence types at high rates, even in the absence of cefotaxime, with resistant strains isolated within 3 days. Our chemostat system provides a good representation of bacterial interactions, including antibiotic resistance transfer in vivo. It can be used as an ethical and relatively inexpensive approach to model dissemination of antibiotic resistance within the gut of any animal or human and refine interventions that mitigate its spread before employing in vivo studies. IMPORTANCE The spread of antimicrobial resistance presents a grave threat to public health and animal health and is affecting our ability to respond to bacterial infections. Transfer of antimicrobial resistance via plasmid exchange is of particular concern as it enables unrelated bacteria to acquire resistance. The gastrointestinal tract is replete with bacteria and provides an environment for plasmid transfer between commensals and pathogens. Here we use the chicken gut microbiota as an exemplar to model the effects of bacterial infection, antibiotic administration, and plasmid transfer. We show that transfer of a multidrug-resistant plasmid from the zoonotic pathogen Salmonella to commensal Escherichia coli occurs at a high rate, even in the absence of antibiotic administration. Our work demonstrates that the in vitro gut model provides a powerful screening tool that can be used to assess and refine interventions that mitigate the spread of antibiotic resistance in the gut before undertaking animal studies. IMPORTANCE The spread of antimicrobial resistance presents a grave threat to public health and animal health and is affecting our ability to respond to bacterial infections. Transfer of antimicrobial resistance via plasmid exchange is of particular concern as it enables unrelated bacteria to acquire resistance. The gastrointestinal tract is replete with bacteria and provides an environment for plasmid transfer between commensals and pathogens. Here we use the chicken gut microbiota as an exemplar to model the effects of bacterial infection, antibiotic administration, and plasmid transfer. We show that transfer of a multidrug-resistant plasmid from the zoonotic pathogen Salmonella to commensal Escherichia coli occurs at a high rate, even in the absence of antibiotic administration. Our work demonstrates that the in vitro gut model provides a powerful screening tool that can be used to assess and refine interventions that mitigate the spread of antibiotic resistance in the gut before undertaking animal studies.


2021 ◽  
Vol 26 (4) ◽  
Author(s):  
Rodolphe Mader ◽  
Peter Damborg ◽  
Jean-Philippe Amat ◽  
Björn Bengtsson ◽  
Clémence Bourély ◽  
...  

Antimicrobial resistance (AMR) should be tackled through a One Health approach, as stated in the World Health Organization Global Action Plan on AMR. We describe the landscape of AMR surveillance in the European Union/European Economic Area (EU/EEA) and underline a gap regarding veterinary medicine. Current AMR surveillance efforts are of limited help to veterinary practitioners and policymakers seeking to improve antimicrobial stewardship in animal health. We propose to establish the European Antimicrobial Resistance Surveillance network in Veterinary medicine (EARS-Vet) to report on the AMR situation, follow AMR trends and detect emerging AMR in selected bacterial pathogens of animals. This information could be useful to advise policymakers, explore efficacy of interventions, support antimicrobial stewardship initiatives, (re-)evaluate marketing authorisations of antimicrobials, generate epidemiological cut-off values, assess risk of zoonotic AMR transmission and evaluate the burden of AMR in animal health. EARS-Vet could be integrated with other AMR monitoring systems in the animal and medical sectors to ensure a One Health approach. Herein, we present a strategy to establish EARS-Vet as a network of national surveillance systems and highlight challenges of data harmonisation and bias. Strong political commitment at national and EU/EEA levels is required for the success of EARS-Vet.


Sign in / Sign up

Export Citation Format

Share Document