scholarly journals Patterns of Water Use in California

Author(s):  
John Helly ◽  
◽  
Daniel Cayan ◽  
Thomas Corringham ◽  
Jennifer Stricklin ◽  
...  

Recent patterns of water use and supply in California are presented based on a new data set compiled from the California Department of Water Resources water balance data for 2002 through 2016. The water use and supply include surface water and groundwater, although groundwater reporting has been incomplete. These data are used to support the Water Plan released every 3 to 5 years and are the most comprehensive and finest spatial- and temporal-scale data set for California water resources. First, using the Bay–Delta watershed as a case example, we show that recent fluctuations in water use are highly correlated with variations in precipitation. Developed water supplies and use show these fluctuations, but they are modified by reservoir inflows and releases, groundwater supplies, and Delta outflows. Second, although the annually precipitated water supply in the Bay–Delta varies by about 30%, the developed water supply damps this considerably. The water management system maintained nearly constant agricultural water use even in periods of intense drought, with year-to-year variation of about 7%. Variability in urban water use is higher (∼20%), largely from conservation during periods of drought. Finally, this information can help improve water resource management because it connects regional-scale data to meaningful policy decision-making at county and sub-county levels. At a time when water policy and management are being re-evaluated across the American West in the light of changing climate, decision-making informed by science and data is urgently needed. The statewide water balance data provide the means to establish a consistent, quantitative framework for water resource analysis throughout the state.

Author(s):  
Arezoo Boroomandnia ◽  
Omid Bozorg-Haddad ◽  
Jimmy Yu ◽  
Mariam Darestani

Abstract Fast-growing water demand, population growth, global climate change, and water quality deterioration all drive scientists to apply novel approaches to water resource management. Nanotechnology is one of the state-of-the-art tools in scientists’ hands which they can use to meet human water needs via reuse of water and utilizing unconventional water resources. Additionally, monitoring water supply systems using new nanomaterials provides more efficient water distribution networks. In this chapter, we consider the generic concepts of nanotechnology and its effects on water resources management strategies. A wide range of nanomaterials and nanotechnologies, including nano-adsorbents, nano-photocatalysts, and nano-membranes, are introduced to explain the role of nanotechnology in providing new water resources to meet growing demand. Also, nanomaterial application as a water alternative in industry, reducing water demand in the industrial sector, is presented. Another revolution made by nanomaterials, also discussed in this chapter, is their use in water supply systems for monitoring probable leakage and leakage reduction. Finally, we present case studies that clarify the influence of nanotechnology on water resources and their management strategies. These case studies prove the importance and inevitable application of nanotechnology to satisfy the rising water demand in the modern world, and show the necessity of nanotechnology awareness for today's water experts.


2018 ◽  
Vol 19 (1) ◽  
pp. 79-87
Author(s):  
M. Esterhuizen ◽  
L. de Jager ◽  
W. A. Jezewski

Abstract In 2012, the South African Department of Water and Sanitation (DWS) initiated a study: Continuation of the Northern Planning Region's All Towns Reconciliation Strategies: Phase 1. This study reviewed, prioritised and updated the rudimentary All Towns strategies initially developed by DWS in 2011. The purpose of the strategies was to reconcile water requirements with available resources for the 2011–2035 planning horizon by estimating the projected water requirements, determining available water resources (surface and groundwater) and developing a water balance. Recommendations were made to conserve, manage and administer local water sources as well as to augment water supplies from other sources if required. The recommendations provided actions and options for implementation by the relevant Water Services Authorities and the DWS at a local and regional level, providing the opportunity for integrated and coordinated planning. Bulk and reticulation metering, the implementation of water conservation and demand management programmes and recommendations on the updating of water use allocations were prioritised. Detailed studies required to determine the most feasible water resource augmentation options to ensure a positive water balance were identified. The study coordinated efforts by officials and stakeholders representing both the water resources and water services sectors. The prioritised strategies defined the deficit or surplus of the water resources per water source on a technical level, but also highlighted the need for planning and coordination between the water resources and water services sectors. The strategies are not legally mandated documents, but represent some of the best efforts spanning across various sectors to realise coordinated water infrastructure planning in DWS’ Northern Planning Region. The use of the documents in the local, district and national planning environments should be promoted for integrated planning, and it may be fitting to incorporate the All Towns Reconciliation Strategy documents as a valuable resource to inform the water legislation currently being reviewed.


Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1740 ◽  
Author(s):  
Mengshan Lee ◽  
Chia-Yii Yu ◽  
Pen-Chi Chiang ◽  
Chia-Hung Hou

The Choshui river basin, the mother river in Taiwan, suffers from severe water shortage from extensive water use in irrigation as well as land subsidence from over-pumping of groundwater. To address these challenges, several water-related strategies and actions, including enhancement of water-use efficiency, development of alternative water sources, and improvement in effective water management, were proposed in this study to support sustainable water resource management in the watershed. Management of water resources in Taiwan is expected to confront not only freshwater resource but also energy source constraints. Multi-criteria decision analysis (MCDA), an approach for ranking overall performances of decision options, was then used to prioritize the water resource management strategies. The analysis considered economic (economic feasibility) and environmental (stability from the influence of climate change) criteria in the context of water–energy nexus (water supply/conservation potential and systemic energy efficiency). Our results indicated that, while economic feasibility was considered as the most important factor in implementation of the practices, improvement in groundwater pumping control and management was ranked as a high-priority water resource management action, followed by initiating water conservation programs for residential sector and reducing leakage rate for agricultural irrigation canals. The results from this study are expected to provide direction for future decision making in water resource management.


2019 ◽  
Vol 11 (22) ◽  
pp. 6463 ◽  
Author(s):  
Li ◽  
Yin ◽  
Zhang ◽  
Croke ◽  
Guo ◽  
...  

The Beijing-Tianjin-Hebei (Jingjinji) region is the most densely populated region in China and suffers from severe water resource shortage, with considerable water-related issues emerging under a changing context such as construction of water diversion projects (WDP), regional synergistic development, and climate change. To this end, this paper develops a framework to examine the water resource security for 200 counties in the Jingjinji region under these changes. Thus, county-level water resource security is assessed in terms of the long-term annual mean and selected typical years (i.e., dry, normal, and wet years), with and without the WDP, and under the current and projected future (i.e., regional synergistic development and climate change). The outcomes of such scenarios are assessed based on two water-crowding indicators, two use-to-availability indicators, and one composite indicator. Results indicate first that the water resources are distributed unevenly, relatively more abundant in the northeastern counties and extremely limited in the other counties. The water resources are very limited at the regional level, with the water availability per capita and per unit gross domestic product (GDP) being only 279/290 m3 and 46/18 m3 in the current and projected future scenarios, respectively, even when considering the WDP. Second, the population carrying capacity is currently the dominant influence, while economic development will be the controlling factor in the future for most middle and southern counties. This suggests that significant improvement in water-saving technologies, vigorous replacement of industries from high to low water consumption, as well as water from other supplies for large-scale applications are greatly needed. Third, the research identifies those counties most at risk to water scarcity and shows that most of them can be greatly relieved after supplementation by the planned WDP. Finally, more attention should be paid to the southern counties because their water resources are not only limited but also much more sensitive and vulnerable to climate change. This work should benefit water resource management and allocation decisions in the Jingjinji region, and the proposed assessment framework can be applied to other similar problems.


2016 ◽  
Vol 20 (7) ◽  
pp. 2877-2898 ◽  
Author(s):  
Hannes Müller Schmied ◽  
Linda Adam ◽  
Stephanie Eisner ◽  
Gabriel Fink ◽  
Martina Flörke ◽  
...  

Abstract. When assessing global water resources with hydrological models, it is essential to know about methodological uncertainties. The values of simulated water balance components may vary due to different spatial and temporal aggregations, reference periods, and applied climate forcings, as well as due to the consideration of human water use, or the lack thereof. We analyzed these variations over the period 1901–2010 by forcing the global hydrological model WaterGAP 2.2 (ISIMIP2a) with five state-of-the-art climate data sets, including a homogenized version of the concatenated WFD/WFDEI data set. Absolute values and temporal variations of global water balance components are strongly affected by the uncertainty in the climate forcing, and no temporal trends of the global water balance components are detected for the four homogeneous climate forcings considered (except for human water abstractions). The calibration of WaterGAP against observed long-term average river discharge Q significantly reduces the impact of climate forcing uncertainty on estimated Q and renewable water resources. For the homogeneous forcings, Q of the calibrated and non-calibrated regions of the globe varies by 1.6 and 18.5 %, respectively, for 1971–2000. On the continental scale, most differences for long-term average precipitation P and Q estimates occur in Africa and, due to snow undercatch of rain gauges, also in the data-rich continents Europe and North America. Variations of Q at the grid-cell scale are large, except in a few grid cells upstream and downstream of calibration stations, with an average variation of 37 and 74 % among the four homogeneous forcings in calibrated and non-calibrated regions, respectively. Considering only the forcings GSWP3 and WFDEI_hom, i.e., excluding the forcing without undercatch correction (PGFv2.1) and the one with a much lower shortwave downward radiation SWD than the others (WFD), Q variations are reduced to 16 and 31 % in calibrated and non-calibrated regions, respectively. These simulation results support the need for extended Q measurements and data sharing for better constraining global water balance assessments. Over the 20th century, the human footprint on natural water resources has become larger. For 11–18% of the global land area, the change of Q between 1941–1970 and 1971–2000 was driven more strongly by change of human water use including dam construction than by change in precipitation, while this was true for only 9–13 % of the land area from 1911–1940 to 1941–1970.


2016 ◽  
Vol 20 (5) ◽  
pp. 1869-1884 ◽  
Author(s):  
Claire L. Walsh ◽  
Stephen Blenkinsop ◽  
Hayley J. Fowler ◽  
Aidan Burton ◽  
Richard J. Dawson ◽  
...  

Abstract. Globally, water resources management faces significant challenges from changing climate and growing populations. At local scales, the information provided by climate models is insufficient to support the water sector in making future adaptation decisions. Furthermore, projections of change in local water resources are wrought with uncertainties surrounding natural variability, future greenhouse gas emissions, model structure, population growth, and water consumption habits. To analyse the magnitude of these uncertainties, and their implications for local-scale water resource planning, we present a top-down approach for testing climate change adaptation options using probabilistic climate scenarios and demand projections. An integrated modelling framework is developed which implements a new, gridded spatial weather generator, coupled with a rainfall-runoff model and water resource management simulation model. We use this to provide projections of the number of days and associated uncertainty that will require implementation of demand saving measures such as hose pipe bans and drought orders. Results, which are demonstrated for the Thames Basin, UK, indicate existing water supplies are sensitive to a changing climate and an increasing population, and that the frequency of severe demand saving measures are projected to increase. Considering both climate projections and population growth, the median number of drought order occurrences may increase 5-fold by the 2050s. The effectiveness of a range of demand management and supply options have been tested and shown to provide significant benefits in terms of reducing the number of demand saving days. A decrease in per capita demand of 3.75 % reduces the median frequency of drought order measures by 50 % by the 2020s. We found that increased supply arising from various adaptation options may compensate for increasingly variable flows; however, without reductions in overall demand for water resources such options will be insufficient on their own to adapt to uncertainties in the projected changes in climate and population. For example, a 30 % reduction in overall demand by 2050 has a greater impact on reducing the frequency of drought orders than any of the individual or combinations of supply options; hence, a portfolio of measures is required.


Author(s):  
V Shinju ◽  
Aswathi Prasad

The natural resources are repository for the survival of all of us, so they must be used efficiently to meet the present needs while conserving them for future generations. An action to develop capacities from global to household levels for their sustainable management and regulation is required henceforth. Of these natural resources, water resources are most precious. If there is no water; there would be no life on earth. Since ‘water is the elixir of life’, water resource management has been considered as one of the most relevant areas of intervention. Understanding the gender dimensions of water resource management is a starting point for reversing the degradation of water resources. Women play an important role here since they have to access the water resources for almost all the activities on a daily basis. As the women are the strong social agents, effective and improved water preservation techniques could be achieved through their empowerment that may eventually lead to the well-being of the households in particular and of the community in general. Therefore, the major research question posed in this study is to analyze the role of women in the preservation and management of water, an inevitable, precious but diminishing natural resource. The study also intends to describe the relationship between the three ‘W's-Women, Water & Well-being. Both qualitative and quantitative approaches are essential here as it is a contingent issue in the present scenario. Psychological dimensions were also explored since the issue is affecting the routine life of the community. The case study of women belonging to the Kuttadampadam region was done to explain the role of women in preserving water resources in the areas affecting severe water scarcity.


Author(s):  
P. Pallavi ◽  
Shaik Salam

Water is an important, but often ignored element in sustainable development by now it has been clear that urgent action is needed to avoid global water crisis. Water resource management is the activity of planning, developing, distributing and managing the optimum use of water resources. Successful management of water resources requires accurate knowledge of their resource distribution to meet up the competing demands and mechanisms to make good decisions using advanced recent technologies.Towards evolving comprehensive management plan in suitable conservation and utilization of water resources space technology plays a crucial role in managing country’s available water resources. Systematic approaches involving judicious combination of conventional server side scripting programming and remote sensing techniques pave way for achieving optimum planning and operational of water resources projects.   new methodologies and 24/7 accessible system need to be built, these by reducing the dependency on complex infrastructure an specialist domain Open source web GIS systems have proven their rich in application of server side scripting and easy to use client application tools. Present study and implementation aims to provide wizard based or easily driven tools online for command area management practices. In this large endeavour modules for handling remote sensing data, online raster processing, statistics and indices generation will be developed.


2019 ◽  
Vol 7 (3) ◽  
pp. 16-22
Author(s):  
Dileep Kumar Koshta ◽  
Ashu Jain

India is rich in natural water resources, but because of the uneven distribution of resources and improper management, the major part of the country suffers from drought almost every year. The present study is based upon the inappropriate management of water resources in the urban and rural area of Jabalpur. The present paper intends to find out the actual condition of management of water resources by the municipal corporation of Jabalpur, whether the citizens of Jabalpur are benefitted through the policies made by the government for the equal distribution of water resources, are the policies adequately implemented and monitored once they are made?The data has been collected from secondary and primary sources, and simple percentage method has been used to analyze the collected data. The outcome of the study reveals that the government is trying to manage the water resource and is concentrated on the equal distribution of water in both urban and rural areas. Many policies have been prepared by the local government, but ineffective monitoring is the leading cause of improper management of water resources.


Sign in / Sign up

Export Citation Format

Share Document