scholarly journals The gut–kidney–heart axis in chronic kidney disease

2019 ◽  
Vol 106 (3) ◽  
pp. 195-206 ◽  
Author(s):  
K Sumida ◽  
CP Kovesdy

The recent explosion of scientific interest in the gut microbiota has dramatically advanced our understanding of the complex pathophysiological interactions between the gut and multiple organs in health and disease. Emerging evidence has revealed that the gut microbiota is significantly altered in patients with chronic kidney disease (CKD), along with impaired intestinal barrier function. These alterations allow translocation of various gut-derived products into the systemic circulation, contributing to the development and progression of CKD and cardiovascular disease (CVD), partly mediated by chronic inflammation. Among potentially toxic gut-derived products identifiable in the systemic circulation, bacterial endotoxin and gut metabolites (e.g., p-cresyl sulfate and trimethylamine-N-oxide) have been extensively studied for their immunostimulatory and atherogenic properties. Recent studies have also suggested similar biological properties of bacterial DNA fragments circulating in the blood of patients with CKD, even in the absence of overt infections. Despite the accumulating evidence of the gut microbiota in CKD and its therapeutic potential for CVD, the precise mechanisms for multidirectional interactions between the gut, kidney, and heart remain poorly understood. This review aims to provide recent evidence on the associations between the gut microbiota, CKD, and CVD, and summarize current understanding of the potential pathophysiological mechanisms underlying the “gut–kidney–heart” axis in CKD.

Toxins ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 285 ◽  
Author(s):  
Pieter Evenepoel ◽  
Sander Dejongh ◽  
Kristin Verbeke ◽  
Bjorn Meijers

Patients with chronic kidney disease (CKD) are at increased risk of bone mineral density loss and vascular calcification. Bone demineralization and vascular mineralization often concur in CKD, similar to what observed in the general population. This contradictory association is commonly referred to as the ‘calcification paradox’ or the bone–vascular axis. Mounting evidence indicates that CKD-associated gut dysbiosis may be involved in the pathogenesis of the bone–vascular axis. A disrupted intestinal barrier function, a metabolic shift from a predominant saccharolytic to a proteolytic fermentation pattern, and a decreased generation of vitamin K may, alone or in concert, drive a vascular and skeletal pathobiology in CKD patients. A better understanding of the role of gut dysbiosis in the bone–vascular axis may open avenues for novel therapeutics, including nutriceuticals.


Toxins ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 298 ◽  
Author(s):  
Björn Meijers ◽  
Ricard Farré ◽  
Sander Dejongh ◽  
Maria Vicario ◽  
Pieter Evenepoel

The kidneys are key contributors to body homeostasis, by virtue of controlled excretion of excessive fluid, electrolytes, and toxic waste products. The syndrome of uremia equals the altered physiology due to irreversible loss of kidney function that is left uncorrected for, despite therapeutic intervention(s). The intestines and its microbial content are prime contributors to this syndrome. The intestinal barrier separates the self (or the so-called “milieu intérior”) from the environment. In the large intestine, the intestinal barrier keeps apart human physiology and the microbiota. The enterocytes and the extracellular mucin layer functions form a complex multilayered structure, facilitating complex bidirectional metabolic and immunological crosstalk. The current review focuses on the intestinal barrier in chronic kidney disease (CKD). Loss of kidney function results in structural and functional alterations of the intestinal barrier, contribution to the syndrome of uremia.


Toxins ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 809
Author(s):  
Mieke Steenbeke ◽  
Sophie Valkenburg ◽  
Tessa Gryp ◽  
Wim Van Biesen ◽  
Joris R. Delanghe ◽  
...  

Chronic kidney disease (CKD) is characterized by gut dysbiosis with a decrease in short-chain fatty acid (SCFA)-producing bacteria. Levels of protein-bound uremic toxins (PBUTs) and post-translational modifications (PTMs) of albumin increase with CKD, both risk factors for cardiovascular morbidity and mortality. The relationship between fecal metabolites and plasma concentrations of PBUTs in different stages of CKD (n = 103) was explored. Estimated GFR tends to correlate with fecal butyric acid (BA) concentrations (rs = 0.212; p = 032), which, in its turn, correlates with the abundance of SCFA-producing bacteria. Specific SCFAs correlate with concentrations of PBUT precursors in feces. Fecal levels of p-cresol correlate with its derived plasma UTs (p-cresyl sulfate: rs = 0.342, p < 0.001; p-cresyl glucuronide: rs = 0.268, p = 0.006), whereas an association was found between fecal and plasma levels of indole acetic acid (rs = 0.306; p = 0.002). Finally, the albumin symmetry factor correlates positively with eGFR (rs = 0.274; p = 0.005). The decreased abundance of SCFA-producing gut bacteria in parallel with the fecal concentration of BA and indole could compromise the intestinal barrier function in CKD. It is currently not known if this contributes to increased plasma levels of PBUTs, potentially playing a role in the PTMs of albumin. Further evaluation of SCFA-producing bacteria and SCFAs as potential targets to restore both gut dysbiosis and uremia in needed.


Author(s):  
Yenan Mo ◽  
Zhaoyu Lu ◽  
Lixin Wang ◽  
Chunlan Ji ◽  
Chuan Zou ◽  
...  

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that promotes cell responses to small molecules derived from the diet, microorganisms, metabolism and pollutants. The AhR signal regulates many basic cellular processes, including cell cycle progression, adhesion, migration, apoptosis and cell proliferation. Many studies have shown that AhR is associated with chronic kidney disease (CKD) and its complications. This article reviews the current knowledge about the role of AhR in CKD, showing that AhR mediates CKD complications, including cardiovascular disease, anemia, bone disorders, cognitive dysfunction and malnutrition, and that it influences drug metabolism in individuals with CKD. AhR enhances the intestinal barrier function to reduce the harmful effects of uremic toxins. Therefore, understanding the complex roles of AhR during CKD is important to be able to target this transcription factor safely and effectively for CKD prevention and treatment.


2019 ◽  
Vol 97 (9) ◽  
pp. 3741-3757 ◽  
Author(s):  
Nirosh D Aluthge ◽  
Dana M Van Sambeek ◽  
Erin E Carney-Hinkle ◽  
Yanshuo S Li ◽  
Samodha C Fernando ◽  
...  

Abstract A variety of microorganisms inhabit the gastrointestinal tract of animals including bacteria, archaea, fungi, protozoa, and viruses. Pioneers in gut microbiology have stressed the critical importance of diet:microbe interactions and how these interactions may contribute to health status. As scientists have overcome the limitations of culture-based microbiology, the importance of these interactions has become more clear even to the extent that the gut microbiota has emerged as an important immunologic and metabolic organ. Recent advances in metagenomics and metabolomics have helped scientists to demonstrate that interactions among the diet, the gut microbiota, and the host to have profound effects on animal health and disease. However, although scientists have now accumulated a great deal of data with respect to what organisms comprise the gastrointestinal landscape, there is a need to look more closely at causative effects of the microbiome. The objective of this review is intended to provide: 1) a review of what is currently known with respect to the dynamics of microbial colonization of the porcine gastrointestinal tract; 2) a review of the impact of nutrient:microbe effects on growth and health; 3) examples of the therapeutic potential of prebiotics, probiotics, and synbiotics; and 4) a discussion about what the future holds with respect to microbiome research opportunities and challenges. Taken together, by considering what is currently known in the four aforementioned areas, our overarching goal is to set the stage for narrowing the path towards discovering how the porcine gut microbiota (individually and collectively) may affect specific host phenotypes.


Author(s):  
Yuko Katayama ◽  
Jun Sugama ◽  
Tomohisa Suzuki ◽  
Yoshimasa Ishimura ◽  
Akihiro Kobayashi ◽  
...  

Abstract Background Inhibiting enteropeptidase, a gut serine protease regulating protein digestion, suppresses food intake and ameliorates obesity and diabetes in mice. However, the effects of enteropeptidase inhibition on the kidney parameters are largely unknown. Here, we evaluated the chronic effects of an enteropeptidase inhibitor, SCO-792, on kidney function, albuminuria, and kidney pathology in spontaneously hypercholesterolaemic (SHC) rats, a rat chronic kidney disease (CKD) model. Methods SCO-792, an orally available enteropeptidase inhibitor, was administered (0.03% and 0.06% (w/w) in the diet) for five weeks to 20-week-old SHC rats showing albuminuria and progressive decline in glomerular filtration rate (GFR). The effects of SCO-792 and the contribution of amino acids to these effects were evaluated. Results SCO-792 increased the faecal protein content, indicating that SCO-792 inhibited enteropeptidase in SHC rats. Chronic treatment with SCO-792 prevented GFR decline and suppressed albuminuria. Moreover, SCO-792 improved glomerulosclerosis and kidney fibrosis. Pair feeding with SCO-792 (0.06%) was less effective in preventing GFR decline, albuminuria, and renal histological damage than SCO-792 treatment, indicating the enteropeptidase-inhibition-dependent therapeutic effects of SCO-792. SCO-792 did not affect the renal plasma flow, suggesting that its effect on GFR was mediated by an improvement in filtration fraction. Moreover, SCO-792 increased hydrogen sulphide production capacity, which has a role in tissue protection. Finally, methionine and cysteine supplementation to the diet abrogated SCO-792-induced therapeutic effects on albuminuria. Conclusions SCO-792-mediated inhibition of enteropeptidase potently prevented GFR decline, albuminuria, and kidney fibrosis; hence, it may have therapeutic potential against CKD.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 114
Author(s):  
Chih-Yu Yang ◽  
Ting-Wen Chen ◽  
Wan-Lun Lu ◽  
Shih-Shin Liang ◽  
Hsien-Da Huang ◽  
...  

Chronic kidney disease (CKD) has long been known to cause significant digestive tract pathology. Of note, indoxyl sulfate is a gut microbe-derived uremic toxin that accumulates in CKD patients. Nevertheless, the relationship between gut microbiota, fecal indole content, and blood indoxyl sulfate level remains unknown. In our study, we established an adenine-induced CKD rat model, which recapitulates human CKD-related gut dysbiosis. Synbiotic treatment in CKD rats showed a significant reduction in both the indole-producing bacterium Clostridium and fecal indole amount. Furthermore, gut microbiota diversity was reduced in CKD rats but was restored after synbiotic treatment. Intriguingly, in our end-stage kidney disease (ESKD) patients, the abundance of indole-producing bacteria, Bacteroides, Prevotella, and Clostridium, is similar to that of healthy controls. Consistently, the fecal indole tends to be higher in the ESKD patients, but the difference did not achieve statistical significance. However, the blood level of indoxyl sulfate was significantly higher than that of healthy controls, implicating that under an equivalent indole production rate, the impaired renal excretion contributes to the accumulation of this notorious uremic toxin. On the other hand, we did identify two short-chain fatty acid-producing bacteria, Faecalibacterium and Roseburia, were reduced in ESKD patients as compared to the healthy controls. This may contribute to gut dysbiosis. We also identified that three genera Fusobacterium, Shewanella, and Erwinia, in the ESKD patients but not in the healthy controls. Building up gut symbiosis to treat CKD is a novel concept, but once proved effective, it will provide an additional treatment strategy for CKD patients.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 959 ◽  
Author(s):  
Jefferson Antônio Leite ◽  
Gabriela Pessenda ◽  
Isabel C. Guerra-Gomes ◽  
Alynne Karen Mendonça de Santana ◽  
Camila André Pereira ◽  
...  

Pattern recognition receptors (PRRs), such as Nod2, Nlrp3, Tlr2, Trl4, and Tlr9, are directly involved in type 1 diabetes (T1D) susceptibility. However, the role of the cytosolic DNA sensor, AIM2, in T1D pathogenesis is still unknown. Here, we demonstrate that C57BL/6 mice lacking AIM2 (AIM2−/−) are prone to streptozotocin (STZ)-induced T1D, compared to WT C57BL/6 mice. The AIM2−/− mice phenotype is associated with a greater proinflammatory response in pancreatic tissues, alterations in gut microbiota and bacterial translocation to pancreatic lymph nodes (PLNs). These alterations are related to an increased intestinal permeability mediated by tight-junction disruption. Notably, AIM2−/− mice treated with broad-spectrum antibiotics (ABX) are protected from STZ-induced T1D and display a lower pancreatic proinflammatory response. Mechanistically, the AIM2 inflammasome is activated in vivo, leading to an IL-18 release in the ileum at 15 days after an STZ injection. IL-18 favors RegIIIγ production, thus mitigating gut microbiota alterations and reinforcing the intestinal barrier function. Together, our findings show a regulatory role of AIM2, mediated by IL-18, in shaping gut microbiota and reducing bacterial translocation and proinflammatory response against insulin-producing β cells, which ultimately results in protection against T1D onset in an STZ-induced diabetes model.


Sign in / Sign up

Export Citation Format

Share Document