scholarly journals A tobozmirigy-csecsemőmirigy rendszer szerepe az autoimmunitás, öregedés és élettartam szabályozásában

2016 ◽  
Vol 157 (27) ◽  
pp. 1065-1070 ◽  
Author(s):  
György Csaba

Thymus is an immunoendocrine organ, the hormones of which mainly influence its own lymphatic elements. It has a central role in the immune system, the neonatal removal causes the collapse of immune system and the whole organism. The thymic nurse cells select the bone marrow originated lymphocytes and destroy the autoreactive ones, while thymus originated Treg cells suppress the autoreactive cells in the periphery. The involution of the organ starts after birth, however, this truly happens in the end of puberty only, as before this it is overcompensated by developmental processes. From the end of adolescence the involution allows the life, proliferation and enhanced functioning of some autoreactive cells, which gradually wear down the cells and intercellular materials, causing the aging. The enhanced and mass function of autoreactive cells lead to the autoimmune diseases and natural death. This means that the involution of thymus is not a part of the organismic involution, but an originator of it, which is manifested in the lifespan-pacemaker function. In this case aging can be comprehended as a thymus-commanded slow autoimmune process. The neonatal removal of pineal gland leads to the complete destruction of the thymus and the crashing down of the immune system, as well as to wasting disease. The involution of the pineal and thymus runs parallel, because the two organs form a functional unit. It is probable that the pineal gland is responsible for the involution of thymus and also regulates its lifespan determining role. The data reviewed do not prove the exclusive role of pineal-thymus system in the regulation of aging and lifespan, however, calls attention to the suitability of solving this problem alone. Orv. Hetil., 2016, 157(27), 1065–1070.

Author(s):  
Abhishek Dutta ◽  
Debomita Sengupta ◽  
Swastika Paul ◽  
Sourio Chakraborty ◽  
Tanya Das

Cancer development is initiated, sustained, and aggravated by a rare population of cells, termed cancer stem cells (CSCs). Although CSCs are considered as a promising source of cells to orchestrate the immune system to work in favour of tumor, the detailed mechanisms underlying their immunomodulatory effects remain elusive. Recent reports indicate the contribution of exosomes, secreted from various cells, as mediators of cell-to-cell communication especially within the tumor microenvironment. We aimed at exploring the role of CSC-derived exosomes (CDEs) in reprogramming the host immune system by generating functional T-regulatory (Treg) cells, and at delineating the underlying mechanisms. Our results showed that CDEs play a significant role in generating CD4 + CD25 + FoxP3 + Treg cells from naive T-cells. A search for the underlying mechanism revealed the presence of FoxP3 protein in CDEs which was found to be transferred to the naïve T-cells. Exosomes from FoxP3-ablated CSCs failed to augment immuno-suppressive Treg cell generation confirming the significant role of the transported protein. In order to understand the contribution of CDE-FoxP3 in maintaining a heritably stable population of Treg cell we checked for the binding of CDE-FoxP3 on conserved non-coding sequence 2 (CNS2) region of FoxP3 promoter in T-naïve cells and found CDE-FoxP3 is indeed recruited to the CNS2 region generating stable and functionally suppressive Treg cells. These results raise the possibility that CSCs provide the initial trigger for immunosuppressive Treg cell generation and thus, breaching the deadly-liaison between them might be a promising strategy in breast cancer therapy.


Nutrients ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1076 ◽  
Author(s):  
José Antonio Estrada ◽  
Irazú Contreras

The gut-microbiome-brain axis is now recognized as an essential part in the regulation of systemic metabolism and homeostasis. Accumulating evidence has demonstrated that dietary patterns can influence the development of metabolic alterations and inflammation through the effects of nutrients on a multitude of variables, including microbiome composition, release of microbial products, gastrointestinal signaling molecules, and neurotransmitters. These signaling molecules are, in turn, implicated in the regulation of the immune system, either promoting or inhibiting the production of pro-inflammatory cytokines and the expansion of specific leukocyte subpopulations, such as Th17 and Treg cells, which are relevant in the development of neuroinflammatory and neurodegenerative conditions. Metabolic diseases, like obesity and type 2 diabetes mellitus, are related to inadequate dietary patterns and promote variations in the aforementioned signaling pathways in patients with these conditions, which have been linked to alterations in neurological functions and mental health. Thus, maintenance of adequate dietary patterns should be an essential component of any strategy aiming to prevent neurological pathologies derived from systemic metabolic alterations. The present review summarizes current knowledge on the role of nutrition in the modulation of the immune system and its impact in the development of neuroinflammation and neurological disease.


2018 ◽  
Vol 20 (5) ◽  
pp. 613-620
Author(s):  
E. K. Oleinik ◽  
A. V. Churov ◽  
V. M. Oleinik

Memory T cells are necessary for development of the immune response and represent one of the most numerous population of human T lymphocytes. On the contrary, suppressive regulatory T cells (Tregs) may terminate the immune response and help to maintain tolerance to self-antigens. These important groups of cells are consisting of different subpopulations and retaining throughout life. However, today there is yet no clear understanding of how the relations between these two groups of cells are formed. In this work we consider possible ways of development and maintenance of CD4+ T cell memory and role of Tregs in these processes. Mechanisms of a differentiation of memory T cells, Tregs and recently described memory Tregs are discussed. The functional and genetic characteristics of these cells are compared. Division of cells according to the functional profile allows drawing parallels between memory T cells and Tregs. These two groups are consisted of central circulating populations (Tc), effector which can migrate toward specific tissues (Te) and tissue-resident cells (Tr), which are staying in peripheral tissues. The similar structural organization of Tregs and memory T cells, existence of transitional forms of tissue-resident Treg subpopulations with properties of memory cells assumes existence of close interrelation between these groups of lymphocytes. The conversion of CD4+ memory T cells into FoxP3-expressing Tregs is one of possible mechanisms of communication between these two groups. The memory Treg-cells with T cell and memory Treg-cell properties can represent a transitional stage of differentiation. On the other side, Treg cells can differentiate independently of memory T cells and accumulate during life in the form of memory Treg cells. The supressor function of Tregs is also necessary as well as function of memory T cells to develop the immune response. It is possible, that a subset of Treg cells undergoes selection in thymus and constitutively express TCR-receptors having affinity with peripheral tissues. Further, these committed cells can be settled into tissues and become tissue-resident Treg cells which maintain regional T cell memory. Tregs can represent the “mirror image” of the structural organization of memory T cells, but with the return sign – the sign of suppression. The quantitative ratio of Tregs and memory T cells (CD4+CD45RO+CD25hiFoxP3+/CD4+CD45RO+CD25-FoxP3-), perhaps, is important criterion for functional assessment of immune system. The balance between these functionally opposite cell subsets has to provide stable functioning of immune system.


Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1911
Author(s):  
Andrea Farini

Duchenne muscular dystrophy (DMD) is the most common, lethal, muscle-wasting disease of childhood [...]


2019 ◽  
Vol 67 (8) ◽  
pp. 1125-1130
Author(s):  
Rong Fu ◽  
Lijuan Li ◽  
Jiaxin Hu ◽  
Yingshuai Wang ◽  
Jinglian Tao ◽  
...  

T cell immunoglobulin and mucin domain 3 (TIM3) expression is associated with immunosuppression and clinical outcomes in many diseases. However, the specific mechanism of TIM3 in immune system has not been clarified. In order to illustrate the mechanism of TIM3 in immune system, we analyzed the expression, function and regulation of TIM3 in T helper (Th)1 cells, Th2 cells, Th17 cells and regulatory T cells (Treg) through flow cytometry in patients with myelodysplastic syndrom (MDS). Our data showed elevated proportion of Th2 and Treg cells, while the proportion of Th1 and Th17 cells decreased in patients with MDS (p<0.05) and the expression of TIM3 increased in Th1, Th17 and Treg cells in patients with MDS when compared with expression in control patients (p<0.05). The secretion of transforming growth factor-β in TIM3+Treg cells decreased in patients with MDS. These findings suggested that TIM3 might affect immune helper systems by regulating Treg cells and related immune cells. Therefore, studying the role of the TIM3 pathway in MDS is necessary and may help to provide a new way to explore the pathogenesis and treatments of MDS.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Milan Buc

Multiple sclerosis (MS) is an inflammatory disease in which the myelin sheaths around the axons of the brain and spinal cord are damaged, leading to demyelination and scarring as well as a broad spectrum of signs and symptoms. It is caused by an autoimmune response to self-antigens in a genetically susceptible individual induced by unknown environmental factors. Principal cells of the immune system that drive the immunopathological processes are T cells, especially of TH1 and TH17 subsets. However, in recent years, it was disclosed that regulatory T cells took part in, too. Subsequently, there was endeavour to develop ways how to re-establish their physiological functions. In this review, we describe known mechanisms of action, efficacy, and side-effects of contemporary and emerging MS immunotherapeutical agents on Treg cells and other cells of the immune system involved in the immunopathogenesis of the disease. Furthermore, we discuss how laboratory immunology can offer physicians its help in the diagnosis process and decisions what kind of biological therapy should be used.


2019 ◽  
Vol 11 (2) ◽  
pp. 79-86
Author(s):  
Cindy Ayustin Noya ◽  
Angkit Kinasih ◽  
Venti Agustina ◽  
R.Rr Maria Dyah Kurniasari

Infeksi saluran pernafasan akut atau yang sering disebut ISPA merupakan infeksi pada saluran pernafasan baik saluran pernafasan atas atau bawah.ISPA juga kebanyakan terjadi pada anak balita karena daya tahan tubuh mereka tidak kuat dalam menghadapi penyakit ISPA. ISPA mengakibatkan kematiansekitar15%-20% per tahun pada usia balita di Negara berkembang. Tujuan penelitian ini adalah untuk mengetahui dan menganalisa peran ibu dalam meningkatkan sistem imun anak dengan ISPA.Metode penelitian yang digunakan dalam penelitian ini adalah kualitatif deskriptif dengan sampel purposive sampling.Populasi dan sampel penelitian ini adalah ibu yang mempunyai anak dengan riwayat dan saat ini menderita penyakit ISPA di Batu Gajah Kota Ambon.Partisipan dalam penelitian ini berjumlah 5 orang. Hasil dari penelitian mendapati 4 kategori yaitu pemberian nutrisi pada anak untuk memenuhi kebutuhan agar sistem imunnya terjaga, kebersihan lingkungan, peran ibu dalam melakukan pencegahan pada anaknya yang mengalami ISPA, dan  peran ibu dalam menjaga dan mempertahankan kesehatan anaknya.   Kata kunci: peran ibu, sistem imun, ispa THE ROLE OF MOTHERS IN INCREASING IMMUNE SYSTEM OF CHILDREN WITH ACUTE RESPIRATORY INFECTION    ABSTRACT Acute respiratory infections or often called ARI is an infection of the upper or lower respiratory tract. ARI occurs mostly in children under the age of five because their endurance is not strong in dealing with ARI. ARI results in deaths of around 15%-20% per year at the age of under-five in developing countries. The purpose of this study was to determine and analyze the role of mothers in improving the immune system of children against ARI. The research method used in this study was qualitative descriptive with a purposive sampling sample. Respondents and samples of this study were five mothers who had children with a history of ARI and currently suffering from the disease in Batu Gajah, Ambon City. The results of the study found 4 categories, namely providing nutrition to children to meet their needs so that their immune systems are maintained, clean environment, mother's role in preventing children with ARI, and mother's role to preserve and maintain the health of their children. The findings indicated that in terms of coping or improving the immune system of a child to avoid ARI, it is necessary to have role the of mothers in providing nutrition so that the immune system is boosted, besides that the mother can prevent and protect her child from various diseases, especially ARI. Keywords: role of mothers, immune system, acute respiratory infections


2020 ◽  
Vol 11 (SPL1) ◽  
pp. 259-261
Author(s):  
Aamir Khan ◽  
Rajni K. Gurmule

Vasavaleha is one of the best medicine given for respiratory diseases. Corona viruses typically affect the respiratory system, causing symptoms such as coughing, fever and shortness of breath. It also affects host immune system of human body. Spreading rate of this disease is very high. Whole world is seeking for the treatment which can uproots this diseases. There in no vaccine available till date against this pandemic disease. Ayurveda mainly focuses on prevention of diseases alongwith its total cure. Rajyakshma Vyadhi is MadhyamMarga Roga as per Ayurveda. It shows many symptoms such as Kasa, Shwasa etc. By overall view of Covid 19, shows its resemblance with Rajyakshma Vyadhi described in Ayurveda. Vasavaleha is a Kalpa which is described in Rogadhikara of Rajyakshma. It shows Kasahara, Shwashara properties. It consists of Vasa, Pipalli, Madhu and Goghrita. These components shows actions like bronchodilation, antitussive effect and many more other actions. Pipalli shows important Rasayana effect. So in present review, we have tried to focus on role of Vasavaleha in the management of Covid 19. This can be used as preventive as well as adjuvant medication in treating Covid 19. There is need of further clinical research to rule of exact action of Vasavaleha against Covid 19.


Sign in / Sign up

Export Citation Format

Share Document