Woven Structure for Flexible Capacitive Pressure Sensors

MRS Advances ◽  
2020 ◽  
Vol 5 (18-19) ◽  
pp. 1029-1037
Author(s):  
Saki Tamura ◽  
Justin K. M. Wyss ◽  
Mirza Saquib Sarwar ◽  
Addie Bahi ◽  
John D. W. Madden ◽  
...  

AbstractFlexible and stretchable capacitive pressure sensors have been developed in recent years due to their potential applications in health monitoring, robot skins, body activity measurements and so on. In order to enhance sensor sensitivity, researchers have changed structure of the dielectric of parallel plate capacitive sensor . Here we enhance the sensor sensitivities by changing electrode composition and explore the use of a woven electrode structure sensor with silver coated nylon yarn and EcoflexTM. The woven structure enhanced sensitivity 2.3 times relative to a simple cross-grid geometry (sensitivity was 0.003 kPa-1). Furthermore, it is also observed that the sensor with the woven electrode also had better repeatability and showed less creep than a device using carbon black electrodes. The woven structure of the electrodes enabled the device to be compliant, despite the presence of the stiff nylon fibres – thereby enabling good sensitivity without the creep seen in softer electrodes.

Author(s):  
youwei Zhao ◽  
Ningle Hou ◽  
Yifan Wang ◽  
Chaochao Fu ◽  
Xiaoting Li ◽  
...  

Flexible, wearable self-powered pressure sensors have successfully sparked great interest in a variety of potential applications. However, the fabrication of such a sensor system with ultra-long battery life, ultra-high operational...


2012 ◽  
Vol 217-219 ◽  
pp. 130-133 ◽  
Author(s):  
You Hong Tang ◽  
Nikolai Witt ◽  
Lin Ye

A conductive silicone rubber (SR) composite, filled with both carbon nanotubes (CNT) and carbon black (CB) is prepared by a simple ball milling method. Because of the good dispersion and synergistic effects of CNT and CB, the SR composite shows improvement in mechanical properties. As well, due to the assembly of conductive pathways generated by the CNT and CB, the nanocomposite becomes highly conductive at a comparatively low concentration, with very high sensitivity for tensile and compressive stress. These outstanding properties show that the SR composite has potential applications in tensile and pressure sensors.


2019 ◽  
Vol 13 (02) ◽  
pp. 2051002
Author(s):  
Shaowei Lu ◽  
Junchi Ma ◽  
Keming Ma ◽  
Shuai Wang ◽  
Xiangdong Yang ◽  
...  

High-performance pressure sensors have caused widespread concern due to the potential applications in 3D-touch technology and wearable electronic devices. Herein, a new type of graphene pressure sensor based on the glass fiber surfacing mat coated with graphene oxide aqueous solution by a spray-vacuum filtration method and HI acid reduction method is reported. It is a simple and highly effective method to reduce graphene oxide films into highly conductive graphene films without destroying their integrity and flexibility at a low temperature based on the nucleophilic substitution reaction. The FTIR, SEM and conductivity tests indicate that the optimum time for graphene oxide to be reduced is 30[Formula: see text]min, under this condition enter the epoxy group has been reacted without damaging the regular sp2 hybrid C atom structure in graphene. The conductivity of the graphene pressure sensor is increased significantly to 23260[Formula: see text]S/m. The monotonic compressing test for 100[Formula: see text]Pa/s and the test of the metal block placement and removal demonstrate that the sensor exhibits relatively high linearity of 99.74% between the response and pressure, the advantage makes the sensor monitor pressure more accurately. More importantly, the pressure sensor based on the glass fiber surfacing mat coated with graphene shows extremely high sensitivity (0.169[Formula: see text][Formula: see text]), fast response time (251[Formula: see text]ms) and good stability for 1000 cycles. Based on its superior performance, it also demonstrates potential applications in measuring pressure and human body’s motions.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Jilong Ye ◽  
Fan Zhang ◽  
Zhangming Shen ◽  
Shunze Cao ◽  
Tianqi Jin ◽  
...  

AbstractTo address the resource-competing issue between high sensitivity and wide working range for a stand-alone sensor, development of capacitive sensors with an adjustable gap between two electrodes has been of growing interest. While several approaches have been developed to fabricate tunable capacitive sensors, it remains challenging to achieve, simultaneously, a broad range of tunable sensitivity and working range in a single device. In this work, a 3D capacitive sensor with a seesaw-like shape is designed and fabricated by the controlled compressive buckling assembly, which leverages the mechanically tunable configuration to achieve high-precision force sensing (resolution ~5.22 nN) and unprecedented adjustment range (by ~33 times) of sensitivity. The mechanical tests under different loading conditions demonstrate the stability and reliability of capacitive sensors. Incorporation of an asymmetric seesaw-like structure design in the capacitive sensor allows the acceleration measurement with a tunable sensitivity. These results suggest simple and low-cost routes to high-performance, tunable 3D capacitive sensors, with diverse potential applications in wearable electronics and biomedical devices.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ruzhan Qin ◽  
Mingjun Hu ◽  
Xin Li ◽  
Te Liang ◽  
Haoyi Tan ◽  
...  

AbstractThe development of flexible capacitive pressure sensors has wide application prospects in the fields of electronic skin and intelligent wearable electronic devices, but it is still a great challenge to fabricate capacitive sensors with high sensitivity. Few reports have considered the use of interdigital electrode structures to improve the sensitivity of capacitive pressure sensors. In this work, a new strategy for the fabrication of a high-performance capacitive flexible pressure sensor based on MXene/polyvinylpyrrolidone (PVP) by an interdigital electrode is reported. By increasing the number of interdigital electrodes and selecting the appropriate dielectric layer, the sensitivity of the capacitive sensor can be improved. The capacitive sensor based on MXene/PVP here has a high sensitivity (~1.25 kPa−1), low detection limit (~0.6 Pa), wide sensing range (up to 294 kPa), fast response and recovery times (~30/15 ms) and mechanical stability of 10000 cycles. The presented sensor here can be used for various pressure detection applications, such as finger pressing, wrist pulse measuring, breathing, swallowing and speech recognition. This work provides a new method of using interdigital electrodes to fabricate a highly sensitive capacitive sensor with very promising application prospects in flexible sensors and wearable electronics.


Author(s):  
Jing Wang ◽  
Longwei Li ◽  
Lanshuang Zhang ◽  
Panpan Zhang ◽  
Xiong Pu

Abstract Highly sensitive soft sensors play key roles in flexible electronics, which therefore have attracted much attention in recent years. Herein, we report a flexible capacitive pressure sensor with high sensitivity by using engineered micro-patterned porous polydimethylsiloxane (PDMS) dielectric layer through an environmental-friendly fabrication procedure. The porous structure is formed by evaporation of emulsified water droplets during PDMS curing process, while the micro-patterned structure is obtained via molding on sandpaper. Impressively, this structure renders the capacitive sensor with a high sensitivity up to 143.5 MPa-1 at the pressure range of 0.068~150 kPa and excellent anti-fatigue performance over 20,000 cycles. Meanwhile, the sensor can distinguish different motions of the same person or different people doing the same action. Our work illustrates the promising application prospects of this flexible pressure sensor for the security field or human motion monitoring area.


2008 ◽  
Vol 54 ◽  
pp. 422-427
Author(s):  
Juan Ren ◽  
David Cheneler ◽  
Mike Ward ◽  
Peter Kinnell

Single crystal silicon diaphragms are widely used as pressure sensitive elements in micromachined pressure sensors. When designing such a sensor it is usual to assume that the silicon is an isotropic material and the average elastic constants are used. However, the mechanical properties of single crystal silicon are orthotropic, and this has an important effect on the mechanical behaviour of silicon diaphragms under pressure. In this work, the deflections of orthotropic silicon circular diaphragms which are orientated against the (100) and the (110) planes are presented. It is found that by assuming silicon is isotropic material, the maximum stress is underestimated by 9.4% for (110) orientated silicon diaphragms, while the maximum stress is underestimated by 8% for (100) orientated silicon diaphragms. Therefore, when a silicon diaphragm is used in a MEMS sensor, the orthotropic properties should be taken into account for accuracy. Finally, the performance of a capacitive sensor is predicted by using finite element method.


2014 ◽  
Vol 687-691 ◽  
pp. 906-909
Author(s):  
Jing Xue ◽  
Nan Li ◽  
Xiang Dong Yang

A multi-spiral capacitive sensor is proposed to improve the sensor performance, and the relation between the geometric parameters design of the sensor and the sensor performance is discussed. Compared to traditional sensors, under the same measurement conditions, the electrical field distribution of the multi-spiral-shaped sensor is presented. The detail effects of the sensor design parameters, such as gaps between the sensor electrodes, the effective area and the geometry of the sensor plates are qualitative analyzed. The experimental results prove that the complex structure sensor can improve the measurement linearity, signal strength and measurement sensitivity.


2017 ◽  
Vol 259 ◽  
pp. 121-126 ◽  
Author(s):  
Kang Liu ◽  
Bing Dai ◽  
Victor Ralchenko ◽  
Yuanqin Xia ◽  
Baogang Quan ◽  
...  

Author(s):  
Nouha Alcheikh ◽  
Amal Z. Hajjaj ◽  
Mohammad I. Younis

Abstract Miniaturized air-pressure sensing devices has received increasing attention during the past few decades. Pressure sensors have been explored in various potential applications, such as industrial control, healthcare, medical testing, and environmental monitoring [1–2]. Different sensing mechanisms and designs have been used for the detection of air-pressure. Of particular importance are resonant pressure sensors based on tracking the change in resonance frequency of the device with pressure. To improve the pressure sensor sensitivity, various designs have been investigated including carbon nanotubes, microcantilever, and bridge resonators. In a recent study [3], we showed a resonant pressure sensor based on an electrothermally heated clamped-clamped straight beam (cooling effect). We showed that operating the resonator near the buckling point maximizes its sensitivity [3]. In this work, we will focus on the detection of air pressure using an electrothermally heated initially curved beam exhibiting veering among its first two symmetric vibration modes, which offers more continuity in frequency variations, and hence measurements compared to buckled beams. The presented approach shows significant advantages in term of sensitivity and wide pressure range.


Sign in / Sign up

Export Citation Format

Share Document