A phosphorescent iridium complex as a probe for diatom cells’ viability

MRS Advances ◽  
2020 ◽  
Vol 5 (18-19) ◽  
pp. 935-941
Author(s):  
G. Leone ◽  
R. Ragni ◽  
D. Vona ◽  
S. R. Cicco ◽  
F. Babudri ◽  
...  

ABSTRACTDiatoms are unicellular photosynthetic algae that autonomously fabricate a porous organized biosilica shell refined in billion years of evolution. They represent an inexhaustible source of low cost, biocompatible mesoporous silica. Despite the major advances in the genomic field, studies on diatom cell biology are still hampered by a lack of cellular tools. In particular, cell staining assays of diatoms viability are still limited or not well performant. Here we provide a phosphorescent organometallic iridium complex (Ir-Fcx) suitable to act as staining agent to detect diatoms viability.

2020 ◽  
pp. 102-109
Author(s):  
D.KH. DOMULLODZHANOV ◽  
◽  
R. RAHMATILLOEV

The article presents the results of the field studies and observations that carried out on the territory of the hilly, low-mountain and foothill agro landscapes of the Kyzylsu-yuzhnaya (Kyzylsu-Southern) River Basin of Tajikistan. Taking into account the high-altitude location of households and the amount of precipitation in the river basin, the annual volumes of water accumulated with the use of low-cost systems of collection and storage of precipitation have been clarified. The amount of water accumulated in the precipitation collection and storage systems has been established, the volume of water used for communal and domestic needs,the watering of livestock and the amount of water that can be used to irrigate crops in the have been determined. Possible areas of irrigation of household plots depending on the different availability of precipitation have been determined. It has been established that in wet years (with precipitation of about 10%) the amount of water collected using drip irrigation will be sufficient for irrigation of 0.13 hectares, and in dry years (with 90% of precipitation) it will be possible to irrigate only 0.03 ha of the household plot. On the basis of the basin, the total area of irrigation in wet years can be 4497 ha, and in dry years only 1087 ha. Taking into account the forecasts of population growth by 2030 and an increase in the number of households, the total area of irrigation of farmlands in wet years may reach 5703 hectares,and in dry years – 1379 hectares. Growing crops on household plots under irrigation contributes to a significant increase in land productivity and increases the efficiency of water use of the Kyzylsu-yuzhnaya basin.


Author(s):  
Matthew L. Cavuto ◽  
Matthew Chun ◽  
Nora Kelsall ◽  
Karl Baranov ◽  
Keriann Durgin ◽  
...  

Transfemoral (above-knee) amputees face a unique and challenging set of restrictions to movement and function. Most notably, they are unable to medially rotate their lower-leg and subsequently cross their legs. The best and most common solution to this issue today is a transfemoral rotator, which allows medial rotation of the leg distal to the knee through a lockable turntable mechanism. However, currently available transfemoral rotators can cost thousands of dollars, and few equivalent technologies exist in the developing world. This paper, supported by the results of field studies and user testing, establishes a framework for the design of a low-cost and easily manufacturable transfemoral rotator for use in the developing world. Two prototypes are presented, each with a unique internal locking mechanism and form. A preliminary field study was conducted on six transfemoral amputees in India and qualitative user and prosthetist feedback was collected. Both prototypes successfully allowed all subjects to complete tasks such as crossing legs, putting on pants, and tying shoes while maintaining functionality of walking and standing. Future iterations of the mechanism will be guided by a combination of the most positively received features of the prototypes and general feedback suggestions from the users.


Biosensors ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 257
Author(s):  
Sebastian Fudickar ◽  
Eike Jannik Nustede ◽  
Eike Dreyer ◽  
Julia Bornhorst

Caenorhabditis elegans (C. elegans) is an important model organism for studying molecular genetics, developmental biology, neuroscience, and cell biology. Advantages of the model organism include its rapid development and aging, easy cultivation, and genetic tractability. C. elegans has been proven to be a well-suited model to study toxicity with identified toxic compounds closely matching those observed in mammals. For phenotypic screening, especially the worm number and the locomotion are of central importance. Traditional methods such as human counting or analyzing high-resolution microscope images are time-consuming and rather low throughput. The article explores the feasibility of low-cost, low-resolution do-it-yourself microscopes for image acquisition and automated evaluation by deep learning methods to reduce cost and allow high-throughput screening strategies. An image acquisition system is proposed within these constraints and used to create a large data-set of whole Petri dishes containing C. elegans. By utilizing the object detection framework Mask R-CNN, the nematodes are located, classified, and their contours predicted. The system has a precision of 0.96 and a recall of 0.956, resulting in an F1-Score of 0.958. Considering only correctly located C. elegans with an [email protected] IoU, the system achieved an average precision of 0.902 and a corresponding F1 Score of 0.906.


2008 ◽  
Vol 294 (1) ◽  
pp. H532-H540 ◽  
Author(s):  
Obaida R. Rana ◽  
Carsten Zobel ◽  
Esra Saygili ◽  
Klara Brixius ◽  
Felix Gramley ◽  
...  

The biomechanical environment to which cells are exposed is important to their normal growth, development, interaction, and function. Accordingly, there has been much interest in studying the role of biomechanical forces in cell biology and pathophysiology. This has led to the introduction and even commercialization of many experimental devices. Many of the early devices were limited by the heterogeneity of deformation of cells cultivated in different locations of the culture plate membranes and were also attached with complicated technical/electronic efforts resulting in a restriction of the reproducibility of these devices. The objective of this study was to design and build a simple device to allow the application of dose-dependent homogeneous equibiaxial static stretch to cells cultured on flexible silicone membranes to investigate biological and biomedical questions. In addition, cultured neonatal rat atrial cardiomyocytes were stretched with the proposed device with different strain gradients. For the first time with this study we could demonstrate that stretch up to 21% caused dose-dependent changes in biological markers such as the calcineurin activity, modulatory calcineurin-interacting protein-1, voltage-gated potassium channel isoform 4.2, and voltage-gated K+ channel-interacting proteins-2 gene expression and transient outward potassium current densities but not the protein-to-DNA ratio and atrial natriuretic peptide mRNA. With both markers mentioned last, dose-dependent stretch alterations could only be achieved with stretch up to 13%. The simple and low-cost device presented here might be applied to a wide range of experimental settings in different fields of research.


Development ◽  
2020 ◽  
Vol 147 (24) ◽  
pp. dev186346
Author(s):  
Marek Mlodzik

ABSTRACTPlanar cell polarity (PCP) reflects cellular orientation within the plane of an epithelium. PCP is crucial during many biological patterning processes and for organ function. It is omnipresent, from convergent-extension mechanisms during early development through to terminal organogenesis, and it regulates many aspects of cell positioning and orientation during tissue morphogenesis, organ development and homeostasis. Suzanne Eaton used the power of Drosophila as a model system to study PCP, but her vision of, and impact on, PCP studies in flies translates to all animal models. As I highlight here, Suzanne's incorporation of quantitative biophysical studies of whole tissues, integrated with the detailed cell biology of PCP phenomena, completely changed how the field studies this intriguing feature. Moreover, Suzanne's impact on ongoing and future PCP studies is fundamental, long-lasting and transformative.


2008 ◽  
Vol 22 (4) ◽  
pp. 584-590 ◽  
Author(s):  
Wilson H. Faircloth ◽  
Jason A. Ferrell ◽  
Christopher L. Main

Peanuts are not often used as a true oilseed crop, especially for the production of fuel. However, peanut could be a feedstock for biodiesel, especially in on-farm or small cooperative businesses, where producers can dictate the cost of making their own fuel. Field studies were conducted in 2005 and 2006 to assess low-cost weed-control systems for peanuts that would facilitate the economic viability of peanut biodiesel. Four preselected herbicide costs ranging from $25 to $62/ha and two application timings were compared with nontreated ($0/ha) and typical ($115/ha) herbicide programs for weed control and peanut oil yield. A peanut oil yield goal of 930 L/ha was exceeded with multiple low-cost herbicide systems in 3 of 4 site–yr. The main effect of application timing was only significant for a single site–year in which oil yield increased linearly with cost of the PRE and POST weed-control system. An herbicide cost of $50/ha, using PRE and POST applications, was consistently among the highest in oil yield, regardless of site–year, exceeding the typical (high value) programs in 3 of 4 site–yr. Use of reduced rates of imazapic (0.5× or 0.035 kg ai/ha) was detrimental in 2 of 4 site–yr. Weed control, and thus oil yields, were most dependent on species present at each location and not on input price. Data from this series of studies will allow researchers and entrepreneurs to more accurately assess the viability and sustainability of peanut biodiesel.


2020 ◽  
Vol 25 (3) ◽  
pp. 234-246
Author(s):  
Charles McRae White ◽  
Mark A. Haidekker ◽  
William S. Kisaalita

New insights into the biomechanical properties of cells are revealing the importance of these properties and how they relate to underlying molecular, architectural, and behavioral changes associated with cell state and disease processes. However, the current understanding of how these in vitro biomechanical properties are associated with in vivo processes has been developed based on the traditional monolayer (two-dimensional [2D]) cell culture, which traditionally has not translated well to the three-dimensional (3D) cell culture and in vivo function. Many gold standard methods and tools used to observe the biomechanical properties of 2D cell cultures cannot be used with 3D cell cultures. Fluorescent molecules can respond to external factors almost instantaneously and require relatively low-cost instrumentation. In this review, we provide the background on fluorescent molecular rotors, which are attractive tools due to the relationship of their emission quantum yield with environmental microviscosity. We make the case for their use in both 2D and 3D cell cultures and speculate on their fundamental and practical applications in cell biology.


2020 ◽  
Author(s):  
Kyriaki Drymoni ◽  
Fabio Luca Bonali ◽  
John Browning ◽  
Agust Gudmundsson ◽  
Luca Fallati ◽  
...  

<p>Field studies are vital for mapping and understanding active geological processes on Earth. Such studies commonly inform analogue and numerical modelling setups and provide insights over a variety of scales. However, geological field studies have several limitations as they are sensitive both to field-based conditions (e.g. weather conditions, geomorphology, weathering, erosion and access) and the experience of the researchers conducting the work. All of these limitations can add significant error or uncertainty to geological measurements. At the same time, new geological measurement techniques (e.g. photogrammetry) are easy to access, fast and friendly to use, but also often depend on ground truthing parameters.</p><p>In this study, we compared two different methods for mapping and surveying volcanotectonic processes related to dyking events: classical field analysis and boat-based photogrammetry. We tested the two approaches on dykes located within a section of a steep cliff face that makes up part of the Santorini caldera. The caldera wall is accessible by land only in the upper most parts and so most measurements require access by boat or by abseiling down the cliff faces. The latter is very dangerous and not recommended.</p><p>The core of the work is to carefully compare field data with the equivalents collected on photogrammetry-derived 3D model, focusing on the sea level area in order to compare reliable dataset. Data comparison is focused on dyke attitudes, thicknesses, petrological descriptions, along the 4-km length profile of the northern caldera wall of Santorini volcano.</p><p>We collected a series of high-resolution images, around 800 pictures in total, aimed at 3D modelling the dyke swarm using photogrammetry methods. They have been collected using a 20 MPX hand-held camera equipped with commercial GPS from a boat, moving parallel and to a constant distance from to the caldera wall.</p><p>Comparison of both datasets allowed insights into 1) the completeness and, 2) the limitations of each technique. Here we assess the various advantages to design a novel multidimensional methodology that allows fast, accurate and low-cost data generation in difficult working conditions, such as at steep cliff faces and flooded terrains.</p>


2007 ◽  
Vol 6 (1) ◽  
pp. 53-65 ◽  
Author(s):  
Sarah A. Brownell ◽  
Alicia R. Chakrabarti ◽  
Forest M. Kaser ◽  
Lloyd G. Connelly ◽  
Rachel L. Peletz ◽  
...  

We describe a point-of-use (POU) ultraviolet (UV) disinfection technology, the UV Tube, which can be made with locally available resources around the world for under $50 US. Laboratory and field studies were conducted to characterize the UV Tube's performance when treating a flowrate of 5 L/min. Based on biological assays with MS2 coliphage, the UV Tube delivered an average fluence of 900±80 J/m2 (95% CI) in water with an absorption coefficient of 0.01 cm−1. The residence time distribution in the UV Tube was characterized as plug flow with dispersion (Peclet Number = 19.7) and a mean hydraulic residence time of 36 s. Undesirable compounds were leached or produced from UV Tubes constructed with unlined ABS, PVC, or a galvanized steel liner. Lining the PVC pipe with stainless steel, however, prevented production of regulated halogenated organics. A small field study in two rural communities in Baja California Sur demonstrated that the UV Tube reduced E. coli concentrations to less than 1/100 ml in 65 out of 70 samples. Based on these results, we conclude that the UV Tube is a promising technology for treating household drinking water at the point of use.


Sign in / Sign up

Export Citation Format

Share Document