On Alteration Rate Renewal Stage of Nuclear Waste Glass Corrosion

MRS Advances ◽  
2020 ◽  
Vol 5 (3-4) ◽  
pp. 111-120 ◽  
Author(s):  
Michael I. Ojovan

Abstract:The three generically accepted stages of glass corrosion are reviewed with focus on final stage termed alteration rate renewal (or resumption) stage when the glass may re-start corroding with the rate similar to that at the initial stage. It is emphasized that physical state and physical changes that occur in the near-surface layers can readily lead to an effective increase of leaching rate which is similar to alteration rate renewals. Experimental data on long-term (during few decades) corrosion of radioactive borosilicate glass K26 designed to immobilize high-sodium operational NPP radioactive waste evidence on resumption-like effects of radionuclides (137,134Cs) leaching. The cause of that was however related not to chemical changes in the leaching environment but rather to physical state of glass surface due to formation of small cracks and new pristine glass areas in contact with water.

2015 ◽  
Vol 1744 ◽  
pp. 153-161 ◽  
Author(s):  
Michael I. Ojovan ◽  
William E. Lee

ABSTRACTThe pH-dependence of glass corrosion rates has a well-known U-shaped form with minima for near-neutral solutions. This paper analyses the change of U-shaped form with time and reveals that the pH dependence evolves even for solutions that have pH not affected by glass corrosion mathematically corresponding to a zero surface to volume ratio. The U(t) dependence is due to changes of concentration profiles of elements in the near-surface layers of glasses in contact with water and is most evident within the initial stages of glass corrosion at relatively low temperatures. Numerical examples are given for the nuclear waste borosilicate glass K-26 which is experimentally characterised by an effective diffusion coefficient of caesium DCs = 4.5 10-12 cm2/day and by a rate of glass hydrolysis in non-saturated groundwater as high as rh = 100 nm/year The changes of U-shaped form need to be accounted when assessing the performance of glasses in contact with water solutions.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Lorena Nava-Farias ◽  
James J. Neeway ◽  
Michael J. Schweiger ◽  
José Marcial ◽  
Nathan L. Canfield ◽  
...  

AbstractLaboratory testing used to assess the long-term chemical durability of nuclear waste forms may not be applicable to disposal because the accelerated conditions may not represent disposal conditions. To address this, we examine the corrosion of vitrified archeological materials excavated from the near surface of a ~1500-year old Iron Age Swedish hillfort, Broborg, as an analog for the disposal of vitrified nuclear waste. We compare characterized site samples with corrosion characteristics generated by standard laboratory durability test methods including the product consistency test (PCT), the vapor hydration test (VHT), and the EPA Method 1313 test. Results show that the surficial layer of the Broborg samples resulting from VHT displays some similarities to the morphology of the surficial layer formed over longer timescales in the environment. This work provides improved understanding of long-term glass corrosion behavior in terms of the thickness, morphology, and chemistry of the surficial features that are formed.


2000 ◽  
Vol 663 ◽  
Author(s):  
M.I. Ojovan ◽  
N.V. Ojovan ◽  
I.V. Startceva ◽  
G.N. Chuikova ◽  
A.S. Barinov

ABSTRACTA model developed for description of waste glass corrosion has been applied to assess the radionuclide release from real radioactive (intermediate level) vitrified material over extended storage periods. Field data generated during the long-term testing of the prototype waste glass packages were mathematically processed and the derived parameters used in model calculations. Regardless of the corrosive saturated conditions of the wet near-surface repository, the fairly high safety of trench disposal has been demonstrated for borosilicate glass containing real NPP- operational waste.


2018 ◽  
Vol 69 (3) ◽  
pp. 688-692
Author(s):  
Lucian Nita ◽  
Dorin Tarau ◽  
Gheorghe Rogobete ◽  
Simona Nita ◽  
Radu Bertici ◽  
...  

The issue addressed relates to an area of 1891694 ha of which 1183343 ha are agricultural land (62, 56) located in the south-west of Romania and refer to the use of soil chemical and physical properties as an acceptor for certain crop systems, with minimal undesirable effects both for plants to be grown, as well as soil characteristics and groundwater surface quality. It is therefore necessary on a case-by-case basis, measure stoc or rect the acidic reaction by periodic or alkaline calculations, the improvement of plant nutrition conditions through ameliorative fertilization and the application of measures to improve the physical state, sufficient justification for the need to develop short and long term strategies for the protection and conservation of edifying factors and the need to respect the frequency of field and laboratory investigations at all 8x8 km grids of the National Soil-Grounds Monitoring System (organized by I.C.P.A.) and completing it with the relevant pedological and agrochemical studies.


2019 ◽  
Vol 9 (22) ◽  
pp. 4813 ◽  
Author(s):  
Hanbo Yang ◽  
Fei Zhao ◽  
Gedong Jiang ◽  
Zheng Sun ◽  
Xuesong Mei

Remaining useful life (RUL) prediction is a challenging research task in prognostics and receives extensive attention from academia to industry. This paper proposes a novel deep convolutional neural network (CNN) for RUL prediction. Unlike health indicator-based methods which require the long-term tracking of sensor data from the initial stage, the proposed network aims to utilize data from consecutive time samples at any time interval for RUL prediction. Additionally, a new kernel module for prognostics is designed where the kernels are selected automatically, which can further enhance the feature extraction ability of the network. The effectiveness of the proposed network is validated using the C-MAPSS dataset for aircraft engines provided by NASA. Compared with the state-of-the-art results on the same dataset, the prediction results demonstrate the superiority of the proposed network.


1998 ◽  
Vol 319 (1-2) ◽  
pp. 39-43 ◽  
Author(s):  
Z Swiatek ◽  
J.T Bonarski ◽  
R Ciach ◽  
Z.T Kuznicki ◽  
I.M Fodchuk ◽  
...  

2009 ◽  
Vol 149 (1-3) ◽  
pp. 143-152 ◽  
Author(s):  
R.O. Abdel Rahman ◽  
H.A. Ibrahim ◽  
N.M. Abdel Monem

Author(s):  
Timothy Marchok

AbstractMultiple configurations of the Geophysical Fluid Dynamics Laboratory vortex tracker are tested to determine a setup that produces the best representation of a model forecast tropical cyclone center fix for the purpose of providing track guidance with the highest degree of accuracy and availability. Details of the tracking algorithms are provided, including descriptions of both the Barnes analysis used for center-fixing most variables and a separate scheme used for center-fixing wind circulation. The tracker is tested by running multiple configurations on all storms from the 2015-2017 hurricane seasons in the Atlantic and eastern Pacific Basins using forecasts from two operational National Weather Service models, the Global Forecast System (GFS) and the Hurricane Weather Research and Forecast (HWRF) model. A configuration that tracks only 850 mb geopotential height has the smallest forecast track errors of any configuration based on an individual parameter. However, a configuration composed of the mean of eleven parameters outperforms any of the configurations that are based on individual parameters. Configurations composed of subsets of the eleven parameters and including both mass and momentum variables provide results comparable to or better than the full 11-parameter configuration. In particular, a subset configuration with thickness variables excluded generally outperforms the 11-parameter mean, while one composed of variables from only the 850 mb and near-surface layers performs nearly as well as the 11-parameter mean. Tracker configurations composed of multiple variables are more reliable in providing guidance through the end of a forecast period than are tracker configurations based on individual parameters.


2021 ◽  
Vol 47 (2) ◽  
pp. 189-192
Author(s):  
A. V. Voitsekhovskii ◽  
S. N. Nesmelov ◽  
S. M. Dzyadukh ◽  
V. S. Varavin ◽  
S. A. Dvoretskii ◽  
...  

2014 ◽  
Vol 20 (6) ◽  
pp. 405-412
Author(s):  
U. Antons ◽  
M. Raupach ◽  
O. Weichold

Abstract The paper focuses on how alkaline media, UV radiation, and carbonation as well as on-going cement hydration affects hydrophobic treatments of concrete and influences the properties of these water-repellent layers. Single-sided nuclear magnetic resonance measurements show that layers formed by impregnating samples with alkyl trialkoxysilanes are stable even under long-term exposure to alkaline solution and UV radiation, with the damage of the latter being limited to the topmost surface layers. Microstructural changes during accelerated carbonation of blast furnace slag cement based concrete have a major impact on the hydrophobic layer properties, while the carbonation of Portland cement concrete has no influence. On-going hydration additionally influences the hydrophobic layer properties.


Sign in / Sign up

Export Citation Format

Share Document