On the occurrence of a metastable tetragonal t′-phase in a ZrO2−13.6 mole % MgO ceramic and its microscopic thermal evolution

1993 ◽  
Vol 8 (3) ◽  
pp. 605-610 ◽  
Author(s):  
M.C. Caracoche ◽  
P.C. Rivas ◽  
A.F. Pasquevich ◽  
A.R. López García ◽  
E. Aglietti ◽  
...  

The time-differential perturbed angular correlation technique has been used to investigate the thermal behavior of a ZrO2−13.6 mole % MgO ceramic between room temperature and 1423 K. Two different quadrupole hyperfine interactions corresponding to a tetragonal structure have been found to result on cooling the ceramic from the single-phase cubic field. One of them agrees with that depicting the pure t-ZrO2 tetragonal phase and the other one has been interpreted as describing a high-MgO-content nontransformable t'–ZrO2 phase. As temperature increases, the latter gives rise to a similar but fluctuating interaction related to the oxygen vacancies mobility and which shows a thermal behavior analogous to that already reported for the stabilized cubic ZrO2. Above 1100 K these dynamic t'-sites transform into pure tetragonal ones which behave ordinarily, suffering the t → m phase transition when cooling to room temperature. Differences found between TDPAC results and information drawn from other techniques are discussed.

2011 ◽  
Vol 5 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Ederson Aguiar ◽  
Alexandre Simões ◽  
Francisco Moura ◽  
Mario Cilense ◽  
Elson Longo ◽  
...  

Bismuth titanate (Bi4Ti3O12 - BIT) ceramics derived from different amounts of excess Bi2O3 were prepared using the polymeric precursor method. In spite of excess bismuth, single phase ceramics were obtained with a con?trolled microstructure. Raman analysis evidenced typical vibrational bands of the BIT phase. UV-vis spectra indicated that excess Bi2O3 causes a reduction in defects in the BIT lattice due to the suppression of oxygen vacancies located at the octahedral BO6-ion. The microstructure and electrical properties are strongly depen?dent on the excess Bi2O3. Appropriate initial Bi2O3 excess reduces the leakage current and loss tangent and thereby improves the polarization of BIT ceramics. Rietveld analyses confirmed that the powders crystallize in an orthorhombic structure with a space group of Fmmm at room temperature. The polarization reversal was investigated by applying ac voltage through a conductive tip during the area scanning and was investigated by piezoresponse force microscopy (PFM).


1983 ◽  
Vol 27 ◽  
Author(s):  
J.C. Soares ◽  
A.A. Melo ◽  
M.F. DA Silva ◽  
E.J. Alves ◽  
K. Freitag ◽  
...  

ABSTRACTLow and high dose hafnium imolanted beryllium samoles have been prepared at room temperature by ion implantation of beryllium commercial foils and single crystals. These samples have been studied before and after annealing with the time differential perturbed angular correlation method (TDPAC) and with Rutherford backscattering and channeling techniques. A new metastable system has been discovered in TDPAC-measurements in a low dose hafnium implanted beryllium foil annealed at 500°C. Channeling measurements show that the hafnium atoms after annealing, are in the regular tetrahedral sites but dislocated from the previous position occupied after implantation. The formation of this system is connected with the redistribution of oxygen in a thin layer under the surface. This effect does not take place precisely at the same temperature in foils and in single crystals.


2012 ◽  
Vol 545 ◽  
pp. 275-278 ◽  
Author(s):  
Lili Widarti Zainuddin ◽  
Norlida Kamarulzaman

A ceramics sample of LiTaO3 was prepared using a sol-gel method. The sample is annealed at 750 °C for 48 hours. X-ray diffraction analysis indicate the formation of single phase, rhombohedral structure. An ac impedance study was used to analyse the conductivity of LiTaO3 at room temperature and at various temperatures.


2019 ◽  
Vol 55 (53) ◽  
pp. 7675-7678 ◽  
Author(s):  
Di Zu ◽  
Zhongfei Xu ◽  
Ao Zhang ◽  
Haiyang Wang ◽  
Hehe Wei ◽  
...  

A Mg/HCl infiltrated metal oxide structure was designed as a facile approach for implanting oxygen vacancies and H atoms into metal oxides.


1988 ◽  
Vol 64 (6) ◽  
pp. 2854-2860 ◽  
Author(s):  
D. C. Hall ◽  
D. G. Deppe ◽  
N. Holonyak ◽  
R. J. Matyi ◽  
H. Shichijo ◽  
...  

Ceramics ◽  
2018 ◽  
Vol 1 (2) ◽  
pp. 343-352 ◽  
Author(s):  
Reginaldo Muccillo ◽  
Daniel de Florio ◽  
Eliana Muccillo

Compositions of (ZrO2)0.92(Y2O3)0.08 (zirconia: 8 mol % yttria—8YSZ) and (CeO2)0.8(Sm2O3)0.2 (ceria: 20 mol % samaria—SDC20) ceramic powders were prepared by attrition milling to form an equimolar powder mixture, followed by uniaxial and isostatic pressing. The pellets were quenched to room temperature from 1200 °C, 1300 °C, 1400 °C and 1500 °C to freeze the defects configuration attained at those temperatures. X-ray diffraction analyses, performed in all quenched pellets, show the evolution of the two (8YSZ and SDC20) cubic fluorite structural phases to a single phase at 1500 °C, identified by Rietveld analysis as a tetragonal phase. Impedance spectroscopy analyses were carried out in pellets either quenched or slowly cooled from 1500 °C. Heating the quenched pellets to 1000 °C decreases the electrical resistivity while it increases in the slowly cooled pellets; the decrease is ascribed to annealing of defects created by lattice micro-tensions during quenching while the increase to partial destabilization of the tetragonal phase.


Sign in / Sign up

Export Citation Format

Share Document