Characterization of the mechanical properties of a–SiC: H films

1993 ◽  
Vol 8 (11) ◽  
pp. 2908-2915 ◽  
Author(s):  
M.J. Loboda ◽  
M.K. Ferber

Amorphous hydrogenated silicon carbide (a–SiC: H) thin films (t < 1 μm) were grown from two different precursor gases, a methane/silane mixture and silacyclobutane (SiC3H8). Plasma enhanced chemical vapor deposition was used to deposit a–SiC: H thin films on silicon substrates at temperatures of 175 °C and 600 °C. These a–SiC: H films were characterized using the mechanical properties microprobe (nanoindenter) and by scratch testing. Data and mechanical properties information collected from these measurements have been correlated with film process conditions and materials characteristics. A simplified approach was used to calculate the average nanoindentation hardness from shallow indentations. Using this technique, results for a silicon wafer are in good agreement with that previously reported. Analysis of the substrate influence on the thin film nanoindentation data implies that the measured hardness is relatively unaffected by the substrate, while the measured elastic properties are somewhat influenced by the substrate. The a–SiC: H film hardness is shown to depend on the precursor gas and molecular bonding, while the elastic properties vary with precursor gas, composition, and density, as influenced by the plasma source deposition power. The MPM data and scratch test data show similar correlations to plasma source power, film structure, and film composition.

2003 ◽  
Vol 766 ◽  
Author(s):  
Daniel D. Burkey ◽  
Karen K. Gleason

AbstractPulsed-plasma chemical vapor deposition was used to deposit thin films from four different organosilicon (OSG) precursors, using water as the oxidant. The OSG precursors varied in structure (cyclic or acyclic), chemical composition (siloxane or silane), and type of organic substituent. Significant differences in final film structure were observed based on precursor identity, with the primary result being that cyclic siloxane precursors yielded films with a greater degree of crosslinking. The identity of the organic substituents was shown to affect the crosslinking potential, in that more reactive side groups, such as vinyl groups, facilitated the formation of crosslinking groups. At low power (200 W), film structure was dictated by precursor identity, whereas at high power (400 W), film structure became more uniform and precursor identity was less important. Mechanical properties tracked with plasma power, with low power samples being relatively soft, with hardness values between 0.126 GPa and 0.536 GPa. Samples produced at higher powers are more extensively crosslinked, resulting in enhanced mechanical properties. Samples produced at high powers had hardness values between 0.679 and 3.22 GPa, depending upon precursor identity. Dielectric constants ranged between 2.3 and 4.0.


2021 ◽  
Vol 255 ◽  
pp. 03005
Author(s):  
Manuel Bärtschi ◽  
Daniel Schachtler ◽  
Silvia Schwyn-Thöny ◽  
Thomas Südmeyer ◽  
Roelene Botha

To enable the production of sophisticated optical interference coating designs, coatings with very low absorption and stray light losses and excellent layer thickness deposition accuracy are required. The selection and optimization of suitable coating materials and deposition processes are consequently essential. This study investigated the influence of the plasma source power on the optical properties, layer uniformity and stress, scattered light behavior and optical losses of magnetron sputtered Ta2O5 thin films.


2009 ◽  
Vol 1153 ◽  
Author(s):  
Yuri Vygranenko ◽  
Ehsanollah Fathi ◽  
Andrei Sazonov ◽  
Manuela Vieira ◽  
Gregory Heiler ◽  
...  

AbstractWe report on structural, electronic, and optical properties of boron-doped, hydrogenated nanocrystalline silicon (nc-Si:H) thin films deposited by plasma-enhanced chemical vapor deposition (PECVD) at a substrate temperature of 150°C. Film properties were studied as a function of trimethylboron-to-silane ratio and film thickness. The film thickness was varied in the range from 14 to 100 nm. The conductivity of 60 nm thick films reached a peak value of 0.07 S/cm at a doping ratio of 1%. As a result of amorphization of the film structure, which was indicated by Raman spectra measurements, any further increase in doping reduced conductivity. We also observed an abrupt increase in conductivity with increasing film thickness ascribed to a percolation cluster composed of silicon nanocrystallites. The absorption loss of 25% at a wavelength of 400 nm was measured for the films with optimized conductivity deposited on glass and glass/ZnO:Al substrates. A low-leakage, blue-enhanced p-i-n photodiode with an nc-Si p-layer was also fabricated and characterized.


2003 ◽  
Vol 778 ◽  
Author(s):  
Z. Xu ◽  
C. Waters ◽  
X. Wang ◽  
N. Sudhir ◽  
S. Yarmolenko ◽  
...  

AbstractComposite thin films of yttria stabilized zirconia (YSZ) and alumina (Al2O3) have been synthesized using liquid fuel combustion chemical vapor deposition (CCVD) and pulsed laser deposition (PLD) in the NSF Center for Advanced Materials and Smart Structures (CAMSS) at North Carolina A&T State University. With the CCVD technique, addition of alumina was realized by adding the designated amount of aluminum-organic in the reagent solution; while with PLD, doping of alumina in YSZ was accomplished by alternative ablations of an YSZ target and an alumina target. Variations in morphology, surface roughness and nano-mechanical properties of the composite thin films of Al2O3/YSZ were characterized. Crystal size of the films processed by CCVD was much larger than that processed by PLD; surface roughness follows the similar tendency. Upon high-temperature annealing, crystals in the PLD processed thin films grew up to 300 nm. The effect of Al2O3 in YSZ thin films on their nano-mechanical properties was dependent on the film deposition techniques in our research. For the films deposited by CCVD, addition of Al2O3 improved the nano hardness and elastic modulus of YSZ thin films, while a decline was observed in the mechanical properties of the films deposited by PLD.


1987 ◽  
Vol 103 ◽  
Author(s):  
Robert C. Cammarata

ABSTRACTEnhancements in the elastic moduli by factors of two or more in compositionally modulated metallic thin films have been observed for a certain range of composition modulation wavelengths. The experimental and theoretical understanding of this phenomenon, known as the supermodulus effect, is reviewed. Also, the mechanical properties of other artificially layered and composite materials are discussed and compared with the behavior of metallic superlattice thin films.


1993 ◽  
Vol 8 (10) ◽  
pp. 2644-2648 ◽  
Author(s):  
Jie Si ◽  
Seshu B. Desu

Pure and conducting RuO2 thin films were successfully deposited on Si, SiO2/Si, and quartz substrates at temperatures as low as 550 °C by a hot wall metal-organic chemical vapor deposition (MOCVD). Bis(cyclopentadienyl)ruthenium, Ru(C5H5)2, was used as the precursor. An optimized MOCVD process for conducting RuO2 thin films was established. Film structure was dependent on MOCVD process parameters such as bubbler temperature, dilute gas flow rates, deposition temperature, and total pressure. Either pure RuO2, pure Ru, or a RuO2 + Ru mixture was obtained under different deposition conditions. As-deposited pure RuO2 films were specular, crack-free, and well adhered on the substrates. The Auger electron spectroscopy depth profile showed good composition uniformity across the bulk of the films. The MOCVD RuO2 thin films exhibited a resistivity as low as 60 μω-cm. In addition, the reflectance of RuO2 in the NIR region had a metallic character.


Surfaces ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 59-72 ◽  
Author(s):  
Zhenghao Gan ◽  
Changzheng Wang ◽  
Zhong Chen

Silicon nitride and silicon oxynitride thin films are widely used in microelectronic fabrication and microelectromechanical systems (MEMS). Their mechanical properties are important for MEMS structures; however, these properties are rarely reported, particularly the fracture toughness of these films. In this study, silicon nitride and silicon oxynitride thin films were deposited by plasma enhanced chemical vapor deposition (PECVD) under different silane flow rates. The silicon nitride films consisted of mixed amorphous and crystalline Si3N4 phases under the range of silane flow rates investigated in the current study, while the crystallinity increased with silane flow rate in the silicon oxynitride films. The Young’s modulus and hardness of silicon nitride films decreased with increasing silane flow rate. However, for silicon oxynitride films, Young’s modulus decreased slightly with increasing silane flow rate, and the hardness increased considerably due to the formation of a crystalline silicon nitride phase at the high flow rate. Overall, the hardness, Young modulus, and fracture toughness of the silicon nitride films were greater than the ones of silicon oxynitride films, and the main reason lies with the phase composition: the SiNx films were composed of a crystalline Si3N4 phase, while the SiOxNy films were dominated by amorphous Si–O phases. Based on the overall mechanical properties, PECVD silicon nitride films are preferred for structural applications in MEMS devices.


Author(s):  
А.С. Гренадёров ◽  
А.А. Соловьёв ◽  
К.В. Оскомов

The results of experimental research on modifying the surface layer of 316L steel by duplex treatment are presented. The latter includes ion-plasma treatment in a nitrogen atmosphere with subsequent plasma-enhanced chemical vapor deposition of hydrocarbon films doped with silicon and oxygen (a-C:H:SiOx). Mechanical properties of steel surface (hardness, modulus of elasticity, plasticity index, plastic deformation resistance) were determined by the nanoindentation method, and adhesion of the films was evaluated by a scratch test. It was found that the greatest improvement in the mechanical properties of the film-substrate system occurs after the deposition of a-C:H:SiOx film on a surface previously hardened in a nitrogen plasma.


Sign in / Sign up

Export Citation Format

Share Document