Transformation probability of graphite-diamond assisted by nonmetallic catalysts at high pressure and high temperature

1999 ◽  
Vol 14 (3) ◽  
pp. 631-633 ◽  
Author(s):  
Liling Sun ◽  
Qi Wu ◽  
Yafei Zhang ◽  
Wenkui Wang

The tendency of graphite-diamond transformation assisted by nonmetallic catalysts of carbonates, sulfates, or phosphorus under high pressure and high temperature has been investigated by calculating the activation energy and transformation probability of the carbon atoms over a potential barrier. It was found that the activation energy is highly sensitive to the catalyst chosen. The value of activation energy in the systems of graphite-carbonates, graphite-phosphorus, and graphite-sulfate are 130.71 × 103, 206.03 × 103, and 221 × 103 J/mol, respectively. If fd stands for the probability of the transformation from graphite to diamond, the probability sequence of graphite-diamond transformation in different systems was put forward: fd(gr.-carbonate) > fd(gr.-phosphorus). fd(gr.-sulfate).

Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1867 ◽  
Author(s):  
Tingting Yang ◽  
Xiu He ◽  
Zengling Ran ◽  
Zhendong Xie ◽  
Yunjiang Rao ◽  
...  

Accurate measurement of strain is one of the most important issues for high temperature environments. We present a highly integrated all-fiber sensor to achieve precise measurements of strain/high-pressure, which consists of a fiber Bragg grating (FBG) inscribed by an 800 nm femtosecond laser cascaded with a micro extrinsic Fabry–Perot (FP) cavity fabricated by the 157 nm laser micromachining technique. FBG is sensitive to temperature, but insensitive to strain/pressure, whereas the FP is sensitive to strain/pressure, but has a small dependence on temperature. Therefore, such a cascaded sensor could be used for dual-parameter measurement and can work well at high temperatures. Experimental results indicate that this device exhibits a good strain characteristic at high temperatures and excellent high-pressure performance at room temperature. Due to its highly sensitive wavelength response, the proposed sensor will have remarkable potential applications in dual parameter sensing in harsh environments.


Author(s):  
E. F. Koch

Because of the extremely rigid lattice structure of diamond, generating new dislocations or moving existing dislocations in diamond by applying mechanical stress at ambient temperature is very difficult. Analysis of portions of diamonds deformed under bending stress at elevated temperature has shown that diamond deforms plastically under suitable conditions and that its primary slip systems are on the ﹛111﹜ planes. Plastic deformation in diamond is more commonly observed during the high temperature - high pressure sintering process used to make diamond compacts. The pressure and temperature conditions in the sintering presses are sufficiently high that many diamond grains in the sintered compact show deformed microtructures.In this report commercially available polycrystalline diamond discs for rock cutting applications were analyzed to study the deformation substructures in the diamond grains using transmission electron microscopy. An individual diamond particle can be plastically deformed in a high pressure apparatus at high temperature, but it is nearly impossible to prepare such a particle for TEM observation, since any medium in which the diamond is mounted wears away faster than the diamond during ion milling and the diamond is lost.


2003 ◽  
Vol 762 ◽  
Author(s):  
A. Gordijn ◽  
J.K. Rath ◽  
R.E.I. Schropp

AbstractDue to the high temperatures used for high deposition rate microcrystalline (μc-Si:H) and polycrystalline silicon, there is a need for compact and temperature-stable doped layers. In this study we report on films grown by the layer-by-layer method (LbL) using VHF PECVD. Growth of an amorphous silicon layer is alternated by a hydrogen plasma treatment. In LbL, the surface reactions are separated time-wise from the nucleation in the bulk. We observed that it is possible to incorporate dopant atoms in the layer, without disturbing the nucleation. Even at high substrate temperatures (up to 400°C) doped layers can be made microcrystalline. At these temperatures, in the continuous wave case, crystallinity is hindered, which is generally attributed to the out-diffusion of hydrogen from the surface and the presence of impurities (dopants).We observe that the parameter window for the treatment time for p-layers is smaller compared to n-layers. Moreover we observe that for high temperatures, the nucleation of p-layers is more adversely affected than for n-layers. Thin, doped layers have been structurally, optically and electrically characterized. The best n-layer made at 400°C, with a thickness of only 31 nm, had an activation energy of 0.056 eV and a dark conductivity of 2.7 S/cm, while the best p-layer made at 350°C, with a thickness of 29 nm, had an activation energy of 0.11 V and a dark conductivity of 0.1 S/cm. The suitability of these high temperature n-layers has been demonstrated in an n-i-p microcrystalline silicon solar cell with an unoptimized μc-Si:H i-layer deposited at 250°C and without buffer. The Voc of the cell is 0.48 V and the fill factor is 70 %.


Alloy Digest ◽  
2019 ◽  
Vol 68 (11) ◽  

Abstract YSS YXM4 is a cobalt-alloyed molybdenum high-speed tool steel with resistance to abrasion, seizure, and deformation under high pressure. This datasheet provides information on composition, physical properties, and hardness. It also includes information on high temperature performance. Filing Code: TS-780. Producer or source: Hitachi Metals America, Ltd.


Sign in / Sign up

Export Citation Format

Share Document