Reactively sputtered WOxNy films

2000 ◽  
Vol 15 (11) ◽  
pp. 2437-2445 ◽  
Author(s):  
Y. G. Shen ◽  
Y. W. Mai

A combined investigation of stress relaxation in WOxNy thin films sputter deposited on silicon wafers in an Ar–N2–O2 gas mixture by in situ substrate curvature measurements and of structural properties by ex situ x-ray diffraction, x-ray photoelectron spectroscopy, transmission electron microscopy (TEM), electron energy loss spectroscopy, and transmission electron diffraction is reported. It was found that the W2N films deposited under oxygen-free conditions had a high compressive stress of 1.45 GPa. As the oxygen concentration was increased, the stress became smaller and reached almost zero for films near 10–15 at.% oxygen. These results can be understood in terms of the decrease in the lattice parameter caused by substituting nitrogen atoms with oxygen in the lattice sites and the development of an amorphous network in the WOxNy films as the incorporation of oxygen was increased. Plan view and cross-sectional TEM analyses showed that 150-nm-thick oxygen-free crystalline W2N films had a columnar microstructure with an average column width of 15–20 nm near the film surface, whereas oxygen imbedded in the films provided a finer grain structure. The effect of oxygen in stabilizing the W2N structure was also elucidated and explained on the basis of structural and thermodynamic stability.

Author(s):  
Hyoung H. Kang ◽  
Michael A. Gribelyuk ◽  
Oliver D. Patterson ◽  
Steven B. Herschbein ◽  
Corey Senowitz

Abstract Cross-sectional style transmission electron microscopy (TEM) sample preparation techniques by DualBeam (SEM/FIB) systems are widely used in both laboratory and manufacturing lines with either in-situ or ex-situ lift out methods. By contrast, however, the plan view TEM sample has only been prepared in the laboratory environment, and only after breaking the wafer. This paper introduces a novel methodology for in-line, plan view TEM sample preparation at the 300mm wafer level that does not require breaking the wafer. It also presents the benefit of the technique on electrically short defects. The methodology of thin lamella TEM sample preparation for plan view work in two different tool configurations is also presented. The detailed procedure of thin lamella sample preparation is also described. In-line, full wafer plan view (S)TEM provides a quick turn around solution for defect analysis in the manufacturing line.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3191
Author(s):  
Arun Kumar Mukhopadhyay ◽  
Avishek Roy ◽  
Gourab Bhattacharjee ◽  
Sadhan Chandra Das ◽  
Abhijit Majumdar ◽  
...  

We report the surface stoichiometry of Tix-CuyNz thin film as a function of film depth. Films are deposited by high power impulse (HiPIMS) and DC magnetron sputtering (DCMS). The composition of Ti, Cu, and N in the deposited film is investigated by X-ray photoelectron spectroscopy (XPS). At a larger depth, the relative composition of Cu and Ti in the film is increased compared to the surface. The amount of adventitious carbon which is present on the film surface strongly decreases with film depth. Deposited films also contain a significant amount of oxygen whose origin is not fully clear. Grazing incidence X-ray diffraction (GIXD) shows a Cu3N phase on the surface, while transmission electron microscopy (TEM) indicates a polycrystalline structure and the presence of a Ti3CuN phase.


1993 ◽  
Vol 311 ◽  
Author(s):  
Lin Zhang ◽  
Douglas G. Ivey

ABSTRACTSilicide formation through deposition of Ni onto hot Si substrates has been investigated. Ni was deposited onto <100> oriented Si wafers, which were heated up to 300°C, by e-beam evaporation under a vacuum of <2x10-6 Torr. The deposition rates were varied from 0.1 nm/s to 6 nm/s. The samples were then examined by both cross sectional and plan view transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy and electron diffraction. The experimental results are discussed in terms of a new kinetic model.


2002 ◽  
Vol 16 (08) ◽  
pp. 1261-1267 ◽  
Author(s):  
M. P. SINGH ◽  
S. A. SHIVASHANKAR ◽  
T. SHRIPATHI

We have studied the chemical composition of alumina ( Al 2 O 3) films grown on Si(100) at different substrate temperatures by metalorganic chemical vapor deposition (MOCVD) using aluminium acetylactonate { Al(acac) 3} as the precursor. We have found that the resulting films of Al 2 O 3 contain substantial amounts of carbon. X-ray photoelectron spectroscopy (XPS) was employed to study the chemical state of carbon present in such films. The XPS spectrum reveals that the carbon present in Al 2 O 3 film is graphitic in nature. Auger electron spectroscopy (AES) was employed to study the distribution of carbon in the Al 2 O 3 films. The AES depth profile reveals that carbon is present throughout the film. The AES study on Al 2 O 3 films corroborates the XPS findings. An investigation of the Al 2 O 3/ Si (100) interface was carried out using cross-sectional transmission electron microscopy (XTEM). The TEM study reveals textured growth of alumina film on Si(100), with very fine grains of alumina embedded in an amorphous carbon-containing matrix.


2012 ◽  
Vol 18 (6) ◽  
pp. 1410-1418 ◽  
Author(s):  
Daniel K. Schreiber ◽  
Praneet Adusumilli ◽  
Eric R. Hemesath ◽  
David N. Seidman ◽  
Amanda K. Petford-Long ◽  
...  

AbstractA sample preparation method is described for enabling direct correlation of site-specific plan-view and cross-sectional transmission electron microscopy (TEM) analysis of individual nanostructures by employing a dual-beam focused-ion beam (FIB) microscope. This technique is demonstrated using Si nanowires dispersed on a TEM sample support (lacey carbon or Si-nitride). Individual nanowires are first imaged in the plan-view orientation to identify a region of interest; in this case, impurity atoms distributed at crystalline defects that require further investigation in the cross-sectional orientation. Subsequently, the region of interest is capped with a series of ex situ and in situ deposited layers to protect the nanowire and facilitate site-specific lift-out and cross-sectioning using a dual-beam FIB microscope. The lift-out specimen is thinned to electron transparency with site-specific positioning to within ∼200 nm of a target position along the length of the nanowire. Using the described technique, it is possible to produce correlated plan-view and cross-sectional view lattice-resolved TEM images that enable a quasi-3D analysis of crystalline defect structures in a specific nanowire. While the current study is focused on nanowires, the procedure described herein is general for any electron-transparent sample and is broadly applicable for many nanostructures, such as nanowires, nanoparticles, patterned thin films, and devices.


1995 ◽  
Vol 402 ◽  
Author(s):  
André Vantommela ◽  
Stefan Degroote ◽  
Johan Dekoster ◽  
Hugo Bender ◽  
Guido Langouche

AbstractEpitaxial CoSi2(100) layers in the thickness range of 20 to 50 nm have been formed by reactive deposition epitaxy (i.e. Co deposition onto a hot Si substrate) without the use of either a template or an intermediate Ti layer. It is explained how growth parameters such as the deposition rate and substrate temperature are crucial in determining the epitaxial nature of the silicide. According to this model, good CoSi2/Si(100) alignment is only achieved when very low deposition rates are used (0.1 Å/s or less), combined with relatively high substrate temperatures during deposition (∼ 600°C or higher). Using these conditions, highly strained, continuous CoSi2 layers with a channeling minimum yield of χmin = 9% could be formed. Using higher rates and/or lower deposition temperatures, an increasing fraction of misoriented CoSi2 grains is presumed from backscattering/channeling and x-ray experiments, the nature of which is under investigation with plan view and cross sectional transmission electron microscopy.


2009 ◽  
Vol 1156 ◽  
Author(s):  
Conal E. Murray ◽  
Paul R. Besser ◽  
Christian Witt ◽  
Jean L. Jordan-Sweet

AbstractGlancing-incidence X-ray diffraction (GIXRD) has been applied to the investigation of depth-dependent stress distributions within electroplated Cu films due to overlying capping layers. 0.65 μm thick Cu films plated on conventional barrier and seed layers received a CVD SiCxNyHz cap, an electrolessly-deposited CoWP layer, or a CoWP layer followed by a SiCxNyHz cap. GIXRD and conventional X-ray diffraction measurements revealed that strain gradients were created in Cu films possessing a SiCxNyHz cap, where a greater in-plane tensile stress was generated near the film / cap interface. The constraint imposed by the SiCxNyHz layer during cooling from the cap deposition temperature led to an increase in the in-plane stress of approximately 180 MPa from the value measured in the bulk Cu. However, Cu films possessing a CoWP cap without a SiCxNyHz layer did not exhibit depth-dependent stress distributions. Because the CoWP capping deposition temperature was much lower than that employed in SiCxNyHz deposition, the Cu experienced elastic deformation during the capping process. Cross-sectional transmission electron microscopy indicated that the top surface of the Cu films exhibited extrusions near grain boundaries for the samples undergoing the thermal excursion during SiCxNyHz deposition. The conformal nature of these caps confirmed that the morphological changes of the Cu film surface occurred prior to capping and are a consequence of the thermal excursions associated with cap deposition.


1997 ◽  
Vol 472 ◽  
Author(s):  
Sudipta Seal ◽  
Tery L. Barr ◽  
Natalie Sobczak ◽  
Ewa Benko ◽  
J. Morgiel

ABSTRACTComposite nitrides (such as BN, TiN) are widely used in various industrial applications because of their extreme wear and corrosion resistance, thermal and electrical properties. In order to obtain composite materials with mese optimal properties, it is important to elucidate whether any chemical reactions occur at nitride/metal interfaces, e.g., those involving BN-Ti/TiN. Materials of interest include the deposition by PVD of Ti and TiN on BN substrates. Some of these systems were then subjected to varying degrees of physical and thermal alteration. Detailed X-ray photoelectron spectroscopy (XPS) has merefore been rendered of these interfaces using cross-sectional display and sputter etching. Resulting structural and morphological features have been investigated with transmission electron microscopy (TEM) and X-ray diffraction (XRD). Diffusion of the nitridation, oxynitride formation and interfacial growth are of general interest.


2005 ◽  
Vol 108-109 ◽  
pp. 357-364
Author(s):  
S. Peripolli ◽  
Marie France Beaufort ◽  
David Babonneau ◽  
Sophie Rousselet ◽  
P.F.P. Fichtner ◽  
...  

In the present work, we report on the effects of the implantation temperature on the formation of bubbles and extended defects in Ne+-implanted Si(001) substrates. The implantations were performed at 50 keV to a fluence of 5x1016 cm-2, for distinct implantation temperatures within the 250°C≤Ti≤800°C interval. The samples are investigated using a combination of cross-sectional and plan-view Transmission Electron Microscopy (TEM) observations and Grazing Incidence Small-Angle X-ray Scattering (GISAXS)measurements. In comparison with similar He implants, we demonstrate that the Ne implants can lead to the formation of a much denser bubble system.


1990 ◽  
Vol 202 ◽  
Author(s):  
Garth B. Freeman ◽  
Woo Y. Lee ◽  
W. J. Lackey ◽  
John A. Hanigofsky ◽  
Karren More

ABSTRACTThis paper discusses the variation in microstructures encountered during the separate depositions of boron nitride (BN) and aluminum nitride (A1N) as well as during the codeposition of BNߝA1N dispersed phase ceramic coatings. This combination was chosen in order to take advantage of the self lubricating properties of hexagonal BN along with the hard, erosion resistance of A1N. Films were characterized using scanning and transmission electron microscopy (SEM and TEM), x-ray photoelectron spectroscopy (XPS), and x-ray diffraction (XRD).A range of coating microstructures are possible depending on the conditions of deposition. The best films produced, in terms of hardness, density, and tenacity, were a fine mixture of turbostratic BN and preferentially oriented A1N whiskers aligned with the whisker axis perpendicular to the substrate surface as seen by both electron microscopy and x-ray diffraction.


Sign in / Sign up

Export Citation Format

Share Document