Stress Gradients Observed in Cu Thin Films Induced by Capping Layers

2009 ◽  
Vol 1156 ◽  
Author(s):  
Conal E. Murray ◽  
Paul R. Besser ◽  
Christian Witt ◽  
Jean L. Jordan-Sweet

AbstractGlancing-incidence X-ray diffraction (GIXRD) has been applied to the investigation of depth-dependent stress distributions within electroplated Cu films due to overlying capping layers. 0.65 μm thick Cu films plated on conventional barrier and seed layers received a CVD SiCxNyHz cap, an electrolessly-deposited CoWP layer, or a CoWP layer followed by a SiCxNyHz cap. GIXRD and conventional X-ray diffraction measurements revealed that strain gradients were created in Cu films possessing a SiCxNyHz cap, where a greater in-plane tensile stress was generated near the film / cap interface. The constraint imposed by the SiCxNyHz layer during cooling from the cap deposition temperature led to an increase in the in-plane stress of approximately 180 MPa from the value measured in the bulk Cu. However, Cu films possessing a CoWP cap without a SiCxNyHz layer did not exhibit depth-dependent stress distributions. Because the CoWP capping deposition temperature was much lower than that employed in SiCxNyHz deposition, the Cu experienced elastic deformation during the capping process. Cross-sectional transmission electron microscopy indicated that the top surface of the Cu films exhibited extrusions near grain boundaries for the samples undergoing the thermal excursion during SiCxNyHz deposition. The conformal nature of these caps confirmed that the morphological changes of the Cu film surface occurred prior to capping and are a consequence of the thermal excursions associated with cap deposition.

2012 ◽  
Vol 472-475 ◽  
pp. 1451-1454
Author(s):  
Xue Hui Wang ◽  
Wu Tang ◽  
Ji Jun Yang

The porous Cu film was deposited on soft PVDF substrate by magnetron sputtering at different sputtering pressure. The microstructure and electrical properties of Cu films were investigated as a function of sputtering pressure by X-ray diffraction XRD and Hall effect method. The results show that the surface morphology of Cu film is porous, and the XRD revealed that there are Cu diffraction peaks with highly textured having a Cu-(220) or a mixture of Cu-(111) and Cu-(220) at sputtering pressure 0.5 Pa. The electrical properties are also severely influenced by sputtering pressure, the resistivity of the porous Cu film is much larger than that fabricated on Si substrate. Furthermore, the resistivity increases simultaneously with the increasing of Cu film surface aperture, but the resistivity of Cu film still decreases with the increasing grain size. It can be concluded that the crystal structure is still the most important factor for the porous Cu film resistivity.


1999 ◽  
Vol 596 ◽  
Author(s):  
R. N. Jacobs ◽  
R. P. Godfrey ◽  
W. L. Sarney ◽  
C. W. Tipton ◽  
L. Salamanca-Riba

AbstractTransmission electron microscopy is used to examine the structural characteristics of Pb0.9La0.1Zr0.2Ti0.8O3 (PLZT) films grown directly on single crystal LaAlO3 (LAO) substrates. In particular, the domain orientation and film epitaxial quality as a function of substrate deposition temperature are obtained in the range 500–650°C and compared to x-ray diffraction results. High-resolution cross sectional images and electron diffraction patterns confirm that domain orientation and overall epitaxial quality can be optimized with growth temperature. In addition, these results show a direct correlation with pyroelectric measurements obtained for capacitor structures incorporating La1−xSrxCoO3 (LSCO) top and bottom electrodes.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3191
Author(s):  
Arun Kumar Mukhopadhyay ◽  
Avishek Roy ◽  
Gourab Bhattacharjee ◽  
Sadhan Chandra Das ◽  
Abhijit Majumdar ◽  
...  

We report the surface stoichiometry of Tix-CuyNz thin film as a function of film depth. Films are deposited by high power impulse (HiPIMS) and DC magnetron sputtering (DCMS). The composition of Ti, Cu, and N in the deposited film is investigated by X-ray photoelectron spectroscopy (XPS). At a larger depth, the relative composition of Cu and Ti in the film is increased compared to the surface. The amount of adventitious carbon which is present on the film surface strongly decreases with film depth. Deposited films also contain a significant amount of oxygen whose origin is not fully clear. Grazing incidence X-ray diffraction (GIXD) shows a Cu3N phase on the surface, while transmission electron microscopy (TEM) indicates a polycrystalline structure and the presence of a Ti3CuN phase.


1988 ◽  
Vol 129 ◽  
Author(s):  
Kyung W. Paik ◽  
Arthur L. Ruoff

ABSTRACTAt the beginning of etching, surface asperities appeared on the top plane of the polyimide (PI) film. The formation of surface asperities is due to the ordered phase in PI film. The known dimension of the ordered phase measured by X-ray diffraction is consistant with the size of surface asperities, 100 Å, observed by TEM. Further ion doses made these asperties evolve into smooth bumps which then eroded into cones as a result of etch yield difference as a function of the angle of beam incidence Y(θ)/Y(0) which has a maximum at θ=70. Finally cones led to the development of grass-likestructure on the top plane of the PI film. The formation of platelike structure on the cross-sectional plane of PI indicates that the structural inhomogeniety of the PI film(the ordered and disordered phase) is the main cause for the surface morphological changes of PI.


1992 ◽  
Vol 275 ◽  
Author(s):  
M. Shinn ◽  
B. -S. Hong ◽  
S. A. Barnett

ABSTRACTEpitaxial B1-structure TiN/NbN superlattices have been grown by reactive magnetron sputtering On MgO(001). X-ray diffraction and transmission electron microscopy (TEM) diffraction spectra exhibited up to nine orders of superlattice reflections, indicating that the superlattice interfaces were relatively sharp. TEM images also showed well-defined layers. The superlattice wavelength (∧) dependence of the superconducting transition temperature (Tc), critical Current density (Jc), and electrical resistivity (ρ) have been investigated. Tc values increased from 12 K to 17 K with increasing ∧. Jc in a magnetic field perpendicular to the film surface ranged from 104 to 106 A/cm2, increasing with increasing wavelength and decreasing with increasing applied magnetic field. Jc in a field parallel to the film surface was > 10 times higher, ≈ 107 A/cm2. The resistivity exhibited different ∧ dependencies in three different A ranges.


2014 ◽  
Vol 1040 ◽  
pp. 813-818 ◽  
Author(s):  
I.I. Shanenkov ◽  
Artur A. Sivkov ◽  
А.Ya. Pak ◽  
Yu.L. Kolganova

The possibility of plasmodynamic synthesis in the carbon-nitrogen system when using melamine as a precursor is described in the paper. The system based on the capacitive energy storage, which allows simultaneously powering the two opposite-directed coaxial magnetoplasma accelerators, is developed. The effect of gaseous medium in the processing chamber of the system on the synthesis product is investigated by applying such techniques as X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). It is demonstrated that an increase in nitrogen pressure results in the structural and morphological changes in the synthesized sample, which might be caused by the increased carbon nitride yield and a great number of the appearing C-N bonds.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Wei-Lin Wang ◽  
Chia-Ti Wang ◽  
Wei-Chun Chen ◽  
Kuo-Tzu Peng ◽  
Ming-Hsin Yeh ◽  
...  

Ta/TaN bilayers have been deposited by a commercial self-ionized plasma (SIP) system. The microstructures of Ta/TaN bilayers have been systematically characterized by X-ray diffraction patterns and cross-sectional transmission electron microscopy. TaN films deposited by SIP system are amorphous. The crystalline behavior of Ta film can be controlled by the N concentration of underlying TaN film. On amorphous TaN film with low N concentration, overdeposited Ta film is the mixture ofα- andβ-phases with amorphous-like structure. Increasing the N concentration of amorphous TaN underlayer successfully leads upper Ta film to form pureα-phase. For the practical application, the electrical property and reliability of Cu interconnection structure have been investigated by utilizing various types of Ta/TaN diffusion barrier. The diffusion barrier fabricated by the combination of crystallizedα-Ta and TaN with high N concentration efficiently reduces the KRc and improves the EM resistance of Cu interconnection structure.


2014 ◽  
Vol 936 ◽  
pp. 282-286
Author(s):  
Ying Wen Duan

Single-crystalline, epitaxial LaFeO3 films with 5 at. % substitution of Pd on the Fe site are grown on (100) SrTiO3 substrate by pulsed-laser deposition technique. The epitaxial orientation relationships are (110)[001]LFPO||(100)[001]STO. X-ray diffraction and transmission electron microscopy reveal that the LFPO films have high structural quality and an atomically sharp LFPO/STO interface. After reduction treatments of as-grown LFPO films, very little Pd escaped the LFPO lattice onto the film surface, the formed Pd (100) particles are oriented epitaxially, and parallel to the LFPO films surface.


1992 ◽  
Vol 280 ◽  
Author(s):  
Z. Ma ◽  
L. H. Allen

ABSTRACTSolid phase epitaxial (SPE) growth of SixGei1-x alloys on Si (100) was achieved by thermal annealing a-Ge/Au bilayers deposited on single crystal Si substrate in the temperature range of 280°C to 310°C. Growth dynamics was investigated using X-ray diffraction, Rutherford backscattering spectrometry, and cross-sectional transmission electron microscopy. Upon annealing, Ge atoms migrate along the grain boundaries of polycrystalline Au and the epitaxial growth initiates at localized triple points between two Au grains and Si substrate, simultaneously incorporating a small amount of Si dissolved in Au. The Au is gradually displaced into the top Ge layer. Individual single crystal SixGei1-x islands then grow laterally as well as vertically. Finally, the islands coalesce to form a uniform layer of epitaxial SixGe1-x alloy on the Si substrate. The amount of Si incorporated in the final epitaxial film was found to be dependent upon the annealing temperature.


1985 ◽  
Vol 54 ◽  
Author(s):  
A. Lahav ◽  
M. Eizenberg ◽  
Y. Komem

ABSTRACTThe reaction between Ni60Ta40 amorphous alloy and (001) GaAs was studied by cross-sectional transmission electron microscopy, Auger spectroscopy, and x-ray diffraction. At 400°C formation of Ni GaAs at the interface with GaAs was observed. After heat treatment at 600°C in vacuum a layered structure of TaAs/NiGa/GaAs has been formed. The NiGa layer has epitaxial relations to the GaAs substrate. The vertical phase separation can be explained by opposite diffusion directions of nickel and arsenic atoms.


Sign in / Sign up

Export Citation Format

Share Document