A new route for the synthesis of calcium-deficient hydroxyapatites with low Ca/P ratio: Both spectroscopic and electric characterization

2000 ◽  
Vol 15 (11) ◽  
pp. 2526-2533 ◽  
Author(s):  
M. Andrés-Vergés ◽  
C. Fern´andez-González ◽  
M. Martínez-Gallego ◽  
J. D. Solier ◽  
I. Cachadiña ◽  
...  

A new route for obtaining calcium-deficient apatites with a Ca/P ratio lower than 1.5 is described, in order to study their proton conduction at temperatures lower than 400 °C. The process is based on the hydrolysis of a mixed solution of Ca(NO3)2 and NH4H2PO4 in the presence of hexamethylenetetramine at a pH of approximately 5 and temperatures of 85–90 °C. The resulting spherical particles of 14 μm in average diameter were aggregates of smaller needles with approximate composition Ca8.5(HPO4)2(PO4)4OH · H2O. The effects of the reagent concentrations, pH, aging time, and temperature were studied, and the solids were characterized by x-ray diffraction, infrared absorption spectroscopy, and electron microscopy. The ionic conduction measured by alternating-current impedance spectroscopy yielded a value of 3 μSm−1 at 200 °C.

2020 ◽  
Vol 2 ◽  
pp. e11
Author(s):  
Werick A. Machado ◽  
Antonio Eduardo da Hora Machado

New photocatalysts based on TiO2 were synthesized and characterized. The synthesis involved the controlled hydrolysis of titanium tetraisopropoxide using water containing different proportions of acetone. X-ray diffraction analyses combined with Raman spectroscopy revealed crystalline oxides characterized by the coexistence of the anatase and brookite phases. The Rietveld refinement of diffractograms showed that the presence of acetone in the synthesis process influenced the composition of these crystalline phases, with the proportion of brookite growing from 13% to 22% with the addition of this solvent in the synthesis process. The BET isotherms revealed that these materials are mesoporous with surface area approximately 12% higher than that of the oxide prepared from hydrolysis using pure water. The photocatalytic potential of these oxides was evaluated by means degradation tests using the dyes Ponceau 4R and Reactive Red 120 as oxidizable substrates. The values achieved using the most efficient photocatalyst among the synthesized oxides were, respectively, 83% and 79% for mineralization, and 100% for discoloration of these dyes. This same oxide loaded with 0.5% of platinum and suspended in a 5:1 v/v water/methanol mixture, produced 56 mmol of gaseous hydrogen in 5 h of reaction, a specific hydrogen production rate of 138.5 mmol h−1g−1, a value 60% higher than that achieved using TiO2 P25 under similar conditions.


2013 ◽  
Vol 9 ◽  
pp. 106-117 ◽  
Author(s):  
Dyanne L Cruickshank ◽  
Natalia M Rougier ◽  
Raquel V Vico ◽  
Susan A Bourne ◽  
Elba I Buján ◽  
...  

An anhydrous 1:1 crystalline inclusion complex between the organophosphorus insecticide fenitrothion [O,O-dimethyl O-(3-methyl-4-nitrophenyl)phosphorothioate] and the host compound heptakis(2,6-di-O-methyl)-β-cyclodextrin (DIMEB) was prepared and its structure elucidated by single-crystal X-ray diffraction. This revealed two independent host molecules in the asymmetric unit. In one of these, the cavity is occupied by two disordered guest components (distinguishable as rotamers with respect to the P–OAr bond) while in the other, three distinct guest components with site-occupancies 0.44, 0.29 and 0.27 appear, the last having a reversed orientation relative to all the other components. Kinetic studies of the alkaline hydrolysis of fenitrothion in the presence of DIMEB showed a remarkable reduction of 84% in the rate of this reaction relative to that for the free substrate, a value exceeding those previously attained with the native hosts, β- and γ-cyclodextrin, and fully methylated β-cyclodextrin.


2004 ◽  
Vol 19 (6) ◽  
pp. 1736-1741 ◽  
Author(s):  
Tiancheng Mu ◽  
Jun Huang ◽  
Zhimin Liu ◽  
Buxing Han ◽  
Zhonghao Li ◽  
...  

Carbon nitride powder with an atomic N/C ratio of 1 has been prepared by reaction of cyanuric chloride with sodium metal. X-ray diffraction, Fourier transform infrared spectra, and x-ray photoelectron spectroscopic data provide substantial evidence for a graphite-like sp2-bonded structure composed of building blocks of s-triazine rings bridged by carbon-carbon atoms in the bulk carbon nitride. The electron-microscopy results reveal that the material is spherical particles with an average diameter of 50 nm. The optical properties and thermal stability are also characterized. Based on the experimental results, it is deduced that the structure of as-prepared material carbon nitride has polyether structure.


TAPPI Journal ◽  
2011 ◽  
Vol 10 (1) ◽  
pp. 17-23
Author(s):  
KEVIN TAYLOR ◽  
RICH ADDERLY ◽  
GAVIN BAXTER

Over time, performance of tubular backpulse pressure filters in kraft mills deteriorates, even with regular acid washing. Unscheduled filter replacement due to filter plugging results in significant costs and may result in mill downtime. We identified acid-insoluble filter-plugging materials by scanning electron microscope/energy-dispersion X-ray spectroscopy (SEM/EDS) and X-ray diffraction (XRD) analysis in both polypropylene and Gore-Tex™ membrane filter socks. The major filter-plugging components were calcium sulfate (gypsum), calcium phosphate (hydroxylapatite), aluminosilicate clays, metal sulfides, and carbon. We carried out detailed sample analysis of both the standard acid-washing procedure and a modified procedure. Filter plugging by gypsum and metal sulfides appeared to occur because of the acid-washing procedure. Gypsum formation on the filter resulted from significant hydrolysis of sulfamic acid solution at temperatures greater than 130°F. Modification of the acid-washing procedure greatly reduced the amount of gypsum and addition of a surfactant to the acid reduced wash time and mobilized some of the carbon from the filter. With surfactant, acid washing was 95% complete after 40 min.


1984 ◽  
Vol 49 (4) ◽  
pp. 936-943 ◽  
Author(s):  
Bohumil Hájek ◽  
Pavel Karen ◽  
Vlastimil Brožek

For the investigation of the products of reaction of yttrium oxide with carbon mixed in various proportions, the chemical and X-ray diffraction methods of analysis were combined with the gas chromatographic analysis of the mixture of hydrocarbons and hydrogen formed on the sample decomposition with water. The carboreduction of Y2O3 was examined at relatively low temperatures, convenient for obtaining the reaction intermediates in higher yields. At 1 600 °C and pressures of 10-3 Pa the reduction of a mixture of Y2O3 with carbon in a stoichiometric ratio of 1 : 7 yields YC2 in equilibrium with 20% of Y2OC phase. At lower carbon contents (down to the Y2O3 : C ratio of 1 : 2) tha fraction of the Y2OC phase increases up to approximately 30%. In addition to Y2O3, the reaction mixture contains also Y2C, Y2OC and a phase giving propyne on hydrolysis. The presence of traces of C3 hydrocarbons and small amounts of methane in the product of hydrolysis of the carbide sample prepared by the carbothermal reduction of the oxide can be explained in terms of the occurrence of the Y15C19 phase, probably substituted in part by oxygen, and of the Y2OC phase. The results are compared with those obtained previously for the Sc2O3 + C system.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 230
Author(s):  
Pengcheng Ma ◽  
Hongying Yang ◽  
Zuochun Luan ◽  
Qifei Sun ◽  
Auwalu Ali ◽  
...  

Bacteria–mineral contact and noncontact leaching models coexist in the bioleaching process. In the present paper, dialysis bags were used to study the bioleaching process by separating the bacteria from the mineral, and the reasons for chalcopyrite surface passivation were discussed. The results show that the copper leaching efficiency of the bacteria–mineral contact model was higher than that of the bacteria–mineral noncontact model. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared (FTIR) were used to discover that the leaching process led to the formation of a sulfur film to inhibit the diffusion of reactive ions. In addition, the deposited jarosite on chalcopyrite surface was crystallized by the hydrolysis of the excess Fe3+ ions. The depositions passivated the chalcopyrite leaching process. The crystallized jarosite in the bacteria EPS layer belonged to bacteria–mineral contact leaching system, while that in the sulfur films belonged to the bacteria–mineral noncontact system.


1999 ◽  
Vol 77 (2) ◽  
pp. 199-204
Author(s):  
Stephen A Westcott ◽  
Nicholas J Taylor ◽  
Todd B Marder

Reactions of (η5-C9H7)Rh(η2-C2H4)2 (1) with quinones were investigated. Substitution of the labile ethylene ligands was observed upon addition of either duroquinone (2,3,5,6-tetramethyl-1,4-benzoquinone) or 1,4-benzoquinone to complex 1. The molecular structure of neutral (η5-C9H7)Rh(2,3,5,6-C6O2(CH3)4) (3), determined by X-ray diffraction, shows that the duroquinone ligand lies in a plane nearly parallel to the indenyl group. The carbonyl moieties of duroquinone lie in a plane incorporating Rh, C2, and the midpoint between C3a and C7a of the indenyl ring. The slip parameter (Δ= d(average Rh-C3a,7a) -d(average Rh-C1,3)) was calculated to be 0.112(2) Å; whereas a value of ca. 0.05 Å had been obtained previously from film data. Values for the hinge angle (HA = angle between normals to the least-squares planes defined by C1, C2, C3 and C1, C7a, C3a, C3) and fold angle (FA = angle between normals to the least-squares planes defined by C1, C2, C3 and C3a, C4, C5, C7, C7a) are 7.2° and 4.0°, respectively.Key words: indenyl, rhodium, quinones, ring-slippage, ground-state distortion.


2006 ◽  
Vol 59 (2) ◽  
pp. 225-232 ◽  
Author(s):  
Pierre Yves Jouan ◽  
Arnaud Tricoteaux ◽  
Nicolas Horny

The aim of this paper is first a better understanding of DC reactive magnetron sputtering and its implications, such as the hysteresis effect and the process instability. In a second part, this article is devoted to an example of specific application: Aluminium Nitride. AlN thin films have been deposited by reactive triode sputtering. We have studied the effect of the nitrogen contents in the discharge and the RF bias voltage on the growth of AlN films on Si(100) deposited by triode sputtering. Stoichiometry and crystal orientation of AlN films have been characterized by means of Fourier-transform infrared spectroscopy, X-ray diffraction and secondary electron microscopy. Dense and transparent AlN layers were obtained at high deposition rates. These films have a (002) orientation whatever the nitrogen content in the discharge, but the best crystallised ones are obtained at low value (10%). A linear relationship was observed between the AlN lattice parameter "c" (perpendicular to the substrate surface) and the in-plane compressive stress. Applying an RF bias to the substrate leads to a (100) texture, and films become amorphous. Moreover, the film's compressive stress increases up to a value of 8GPa before decreasing slowly as the bias voltage increases.


2000 ◽  
Vol 55 (1-2) ◽  
pp. 291-297 ◽  
Author(s):  
T. J. Bastow

Some recent progress in solid state 47,49Ti NMR is described and reviewed. The metallic-state work described covers metals such as hep titanium, TiB2 , a number of intermetallics such as TiAl2 and TiAl3· The inorganic work covers the various titanium oxide based materials including the TiO2 polymorphs, anatase, rutile and brookite. The gel work covers the evolution of crystalline titania from gels formed by hydrolysis of titanium isopropoxide. Some complementary data from 17O and 13C NMR and powder X-ray diffraction is also included.


2011 ◽  
Vol 306-307 ◽  
pp. 410-415
Author(s):  
Li Sun ◽  
Fu Tian Liu ◽  
Qi Hui Jiang ◽  
Xiu Xiu Chen ◽  
Ping Yang

Core/shell type nanoparticles with an average diameter of 20nm were synthesized by chemical precipitation method. Firstly, Monodisperse Fe3O4 nanoparticles were synthesized by solvethermal method. FeSO4ž7H2O and NaBH4 were respectively dissolved in distilled water, then moderated Fe3O4 particles and surfactant(PVP) were ultrasonic dispersed into the FeSO4ž7H2O solution. The resulting solution was stirred 2 h at room temperature. Fe could be deposited on the surface of monodispersed Fe3O4 nanoparticles to form core-shell particles. The particles were characterized by using various experimental techniques, such as transmission electron microscopy (TEM), X-ray diffraction (XRD), AGM and DTA. The results suggest that the saturation magnetization of the nanocomposites is 100 emu/g. The composition of the samples show monodisperse and the sides of the core/shell nanoparticles are 20-30nm. It is noted that the formation of Fe3O4/Fe nanocomposites magnetite nanoparticles possess superparamagnetic property.


Sign in / Sign up

Export Citation Format

Share Document