Rational solvent selection strategies to combat striation formation during spin coating of thin films

2001 ◽  
Vol 16 (4) ◽  
pp. 1145-1154 ◽  
Author(s):  
Dunbar P. Birnie

Striation defects in spin-coated thin films are a result of unfavorable capillary forces that develop due to the physical processes commonly involved in the spin-coating technique. Solvent evaporation during spinning causes depletion at the surface of the more volatile solution components while simultaneous viscous out-flow occurs providing the main source of solution thickness reduction during any typical spinning run. The composition changes in the surface layer can either stabilize or destabilize the surface with respect to convective motions within the coating solution. Destabilization (and therefore possible striation formation) happens when the surface composition changes so that a larger surface tension will develop. Thus, a careful cross-referencing of solvent volatility with surface tension effects can help establish solution conditions that will prevent this instability from arising. A plot of solvent vapor pressure (Pv) versus solvent surface tension (σ) is introduced and utilized to help discuss the impact of solvent choice when making coatings via spin coating. One important result is that when desiring to deposit a coating having a surface tension of σsolid, then it is favorable to use a fully miscible solvent that has a higher surface tension (i.e., σliquid > σsolid). More complicated solution mixtures were also examined, including dual-solvent systems and water-containing systems.

2017 ◽  
pp. 5133-5140
Author(s):  
Salah. M. M.Salman

Multilayer thin films of amorphous arsenic triselenide (As2Se3) were obtained by spin coating solution of an amine salt in amide on glass substrate.  The deposited multilayers in the range of 500 to 1000 nm were optically characterized by measuring the transmission spectra at room temperature.  All used samples were baked and annealed for different periods of times and temperatures.  The effect of layers number, baking times and temperatures on optical parameters were investigated.  The thickness of the prepared samples up to four layers was ranging between 0.1 µm to 0.2 µm.


2021 ◽  
Vol 8 ◽  
Author(s):  
Patrick Wai-Keung Fong ◽  
Gang Li

The development of perovskite solar cells (PSCs) has been extensively studied in the past decade, and the power conversion efficiency (PCE) has reached a record of 25.2%. Despite impressively high PCE, the fabrication process mainly relied on a well-controlled environment, an inert gas–filled glovebox, and devices of small areas were demonstrated. This impedes the technology transfer from laboratory scale spin coating to manufacturing ambient air scalable processes. Furthermore, the nucleation and crystal growth processes of the perovskite thin films are different when the films are prepared in different environmental conditions. In this review, we summarize the recent advances of ambient air–processed organometallic halide perovskite thin films. Focuses are made on the impact of ambient air conditions, typically adventitious moisture, on the crystallization of perovskites thin films. The challenges and strategies in the technology transfer from the glovebox or ambient air spin coating to scalable meniscus blade coating are also discussed to shed light on the manufacture of ambient air–processed PSCs.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 198
Author(s):  
Navid Chapman ◽  
Mingyu Chapman ◽  
William B. Euler

A predictive film thickness model based on an accepted equation of state is applied to the spin-coating of sub-micron poly(methylmethacrylate) viscous thin films from toluene. Concentration effects on density and dynamic viscosity of the spin-coating solution are closely examined. The film thickness model is calibrated with a system-specific film drying rate and was observed to scale with the square root of spin speed. Process mapping is used to generate a three-dimensional design space for the control of film thickness.


2019 ◽  
Vol 7 (1) ◽  
pp. 28
Author(s):  
KOMARAIAH DURGAM ◽  
RADHA EPPA ◽  
REDDY M. V. RAMANA ◽  
KUMAR J. SIVA ◽  
R. SAYANNA ◽  
...  

Author(s):  
Atefeh Nazari Setayesh ◽  
Hassan Sedghi

Background: In this work, CdS thin films were synthesized by sol-gel method (spin coating technique) on glass substrates to investigate the optical behavior of the film. Methods: Different substrate spin coating speeds of 2400, 3000, 3600 rpm and different Ni dopant concentrations of 0 wt.%, 2.5 wt.%, 5 wt.%) were investigated. The optical properties of thin films such as refraction index, extinction coefficient, dielectric constant and optical band gap energy of the layers were discussed using spectroscopic ellipsometry method in the wavelength range of 300 to 900 nm. Results: It can be deduced that substrate rotation speed and dopant concentration has influenced the optical properties of thin films. By decreasing rotation speed of the substrate which results in films with more thicknesses, more optical interferences were appeared in the results. Conclusion: The samples doped with Ni comparing to pure ones have had more optical band gap energy.


RSC Advances ◽  
2021 ◽  
Vol 11 (42) ◽  
pp. 26218-26227
Author(s):  
R. Panda ◽  
S. A. Khan ◽  
U. P. Singh ◽  
R. Naik ◽  
N. C. Mishra

Swift heavy ion (SHI) irradiation in thin films significantly modifies the structure and related properties in a controlled manner.


2021 ◽  
Vol 29 (1) ◽  
pp. 73-87 ◽  
Author(s):  
Margaretha Gansterer ◽  
Richard F. Hartl

AbstractLogistics providers have to utilize available capacities efficiently in order to cope with increasing competition and desired quality of service. One possibility to reduce idle capacity is to build coalitions with other players on the market. While the willingness to enter such coalitions does exist in the logistics industry, the success of collaborations strongly depends on mutual trust and behavior of participants. Hence, a proper mechanism design, where carriers do not have incentives to deviate from jointly established rules, is needed. We propose to use a combinatorial auction system, for which several properties are already well researched but little is known about the auction’s first phase, where carriers have to decide on the set of requests offered to the auction. Profitable selection strategies, aiming at maximization of total collaboration gains, do exist. However, the impact on individual outcomes, if one or more players deviate from jointly agreed selection rules is yet to be researched. We analyze whether participants in an auction-based transport collaboration face a Prisoners’ Dilemma. While it is possible to construct such a setting, our computational study reveals that carriers do not profit from declining the cooperative strategy. This is an important and insightful finding, since it further strengthens the practical applicability of auction-based trading mechanisms in collaborative transportation.


Sign in / Sign up

Export Citation Format

Share Document