Effect of Interface Conditions on Yield Behavior of Passivated Copper Thin Films

2002 ◽  
Vol 17 (7) ◽  
pp. 1863-1870 ◽  
Author(s):  
Richard P. Vinci ◽  
Stefanie A. Forrest ◽  
John C. Bravman

Wafer curvature was used to study the thermal–mechanical behavior of 1-μm Cu thin films capped with a 100-nm-thick Si3N4 layer. These films were grown with either a Ta or a Si3N4 underlayer. Films on Si3N4 that were exposed to oxygen at the film/capping layer interface or at the center of the copper layer exhibited Bauschinger-like yielding at low stress. Stacks deposited under continuous vacuum, with a Ta underlayer, with carbon exposure at the upper surface of the copper film, or with oxygen exposure of only the underlayer did not demonstrate the anomalous yielding. Preferential diffusion of oxygen into copper grain boundaries or interfaces is the likely cause of the early yield behavior. Possible mechanisms include an increase in interface adhesion due to the presence of oxygen in solution and diffusion-induced dislocation glide as an additional driving force for dislocation motion at low applied stress.

Author(s):  
R. M. Anderson

Aluminum-copper-silicon thin films have been considered as an interconnection metallurgy for integrated circuit applications. Various schemes have been proposed to incorporate small percent-ages of silicon into films that typically contain two to five percent copper. We undertook a study of the total effect of silicon on the aluminum copper film as revealed by transmission electron microscopy, scanning electron microscopy, x-ray diffraction and ion microprobe techniques as a function of the various deposition methods.X-ray investigations noted a change in solid solution concentration as a function of Si content before and after heat-treatment. The amount of solid solution in the Al increased with heat-treatment for films with ≥2% silicon and decreased for films <2% silicon.


1997 ◽  
Vol 473 ◽  
Author(s):  
Michael Lane ◽  
Robert Ware ◽  
Steven Voss ◽  
Qing Ma ◽  
Harry Fujimoto ◽  
...  

ABSTRACTProgressive (or time dependent) debonding of interfaces poses serious problems in interconnect structures involving multilayer thin films stacks. The existence of such subcriticai debonding associated with environmentally assisted crack-growth processes is examined for a TiN/SiO2 interface commonly encountered in interconnect structures. The rate of debond extension is found to be sensitive to the mechanical driving force as well as the interface morphology, chemistry, and yielding of adjacent ductile layers. In order to investigate the effect of interconnect structure, particularly the effect of an adjacent ductile Al-Cu layer, on subcriticai debonding along the TiN/SiO2 interface, a set of samples was prepared with Al-Cu layer thicknesses varying from 0.2–4.0 μm. All other processing conditions remained the same over the entire sample run. Results showed that for a given crack growth velocity, the debond driving force scaled with Al-Cu layer thickness. Normalizing the data by the critical adhesion energy allowed a universal subcriticai debond rate curve to be derived.


2012 ◽  
Vol 80 ◽  
pp. 175-177 ◽  
Author(s):  
Huibin Liu ◽  
Xinhua Pan ◽  
Ping Ding ◽  
Zhizhen Ye ◽  
Haiping He ◽  
...  

1983 ◽  
Vol 17 (10) ◽  
pp. 1231-1235 ◽  
Author(s):  
P.G. Shewmon ◽  
G. Meyrick ◽  
S. Mishra ◽  
T.A. Parthasarathy

2008 ◽  
Vol 587-588 ◽  
pp. 820-823 ◽  
Author(s):  
Rui M.S. Martins ◽  
Manfred Beckers ◽  
A. Mücklich ◽  
Norbert Schell ◽  
Rui Jorge C. Silva ◽  
...  

Ni-Ti Shape Memory Alloy thin films are suitable materials for microelectromechanical devices. During the deposition of Ni-Ti thin films on Si substrates, there exist interfacial diffusion and chemical interactions at the interface due to the high temperature processing necessary to crystallize the film. For the present study, Ni-Ti thin films were prepared by magnetron cosputtering from Ni-Ti and Ti targets in a specially designed chamber mounted on the 6-circle goniometer of the ROssendorf BeamLine (ROBL-CRG) at ESRF, Grenoble (France). The objective of this study has been to investigate the interfacial structure resulting from depositions (at a temperature of ≈ 470°C) on different substrates: naturally oxidized Si(100), Si(111) and poly-Si substrates. A detailed High-Resolution TEM analysis of the interfacial structure has been performed. When Ni-Ti is deposited on Si(100) substrate, a considerable diffusion of Ni into the substrate takes place, resulting in the growth of semi-octaeder A-NiSi2 silicide. In the case of Ni-Ti deposited on Si(111), there appears an uniform thickness plate, due to the alignment between substrate orientation and the [111]-growth front. For Ni-Ti deposited on poly-Si, the diffusion is inhomogeneous. Preferential diffusion is found along the columnar grains of poly-Si, which are favourably aligned for Ni diffusion. These results show that for the Ni-Ti/Si system, the morphology of the diffusion interface is strongly dependent on the type of substrates.


1993 ◽  
Vol 32 (S3) ◽  
pp. 57 ◽  
Author(s):  
R. Klenk ◽  
T. Walter ◽  
D. Schmid ◽  
H. W. Schock

2001 ◽  
Vol 673 ◽  
Author(s):  
Seungmin Hyun ◽  
Oliver Kraft ◽  
Richard P. Vinci

ABSTRACTThe elastic moduli and flow stresses of as-deposited Pt and Pt-Ru solid solution thin films were investigated by the nanoindentation method. The influence of solid solution alloying was explored by depositing Pt-Ru solid solution thin films with various compositions onto Si substrates. The 200 nm films were prepared by DC magnetron cosputtering with a Ru composition range from 0 to 20wt%. As expected, the modulus and the flow stress both increased significantly with an increase in Ru. The experimental results compare favorably to predictions based on a simple dislocation motion model consisting of three strengthening terms: substrate constraint, grain size strengthening and solid solution strengthening.


2005 ◽  
Vol 875 ◽  
Author(s):  
Marc Legros ◽  
Gerhard Dehm ◽  
T. John Balk

AbstractTo investigate the origin of the high strength of thin films, in-situ cross-sectional TEM deformation experiments have been performed on several metallic films attached to rigid substrates. Thermal cycles, comparable to those performed using laser reflectometry, were applied to thin foils inside the TEM and dislocation motion was recorded dynamically on video. These observations can be directly compared to the current models of dislocation hardening in thin films. As expected, the role of interfaces is crucial, but, depending on their nature, they can attract or repel dislocations. When the film/interface holds off dislocations, experimental values of film stress match those predicted by the Nix-Freund model. In contrast, the attracting case leads to higher stresses that are not explained by this model. Two possible hardening scenarios are explored here. The first one assumes that the dislocation/interface attraction reduces dislocation mobility and thus increases the yield stress of the film. The second one focuses on the lack of dislocation nucleation processes in the case of attracting interfaces, even though a few sources have been observed in-situ.


2005 ◽  
Vol 875 ◽  
Author(s):  
E.H. Tan ◽  
L.Z. Sun

AbstractBased on the physical background, a new dislocation dynamics model fully incorporating the interaction among differential dislocation segments is developed to simulate 3D dislocation motion in crystals. As the numerical simulation results demonstrate, this new model completely solves the long-standing problem that simulation results are heavily dependent on dislocation-segment lengths in the classical dislocation dynamics theory. The proposed model is applied to simulate the effect of dislocations on the mechanical performance of thin films. The interactions among the dislocation loops, free surface and interfaces are rigorously computed by a decomposition method. This framework can be used to simulate how a surface loop evolves into two threading dislocations and to determine the critical thickness of thin films. Furthermore, the relationship between the film thickness and yield strength is established and compared with the conventional Hall-Petch relation.


Sign in / Sign up

Export Citation Format

Share Document