Flame Synthesis of Y2O3:Eu Nanophosphors Using Ethanol as Precursor Solvents

2005 ◽  
Vol 20 (11) ◽  
pp. 2960-2968 ◽  
Author(s):  
Xiao Qin ◽  
Yiguang Ju ◽  
Stefan Bernhard ◽  
Nan Yao

Y2O3:Eu nanophosphors were prepared by flame synthesis using ethanol or water as precursor solutions. The effects of precursor solvents and flame temperature on particle size, morphology, and photoluminescence intensity were investigated. The results showed that flame synthesis using ethanol solution could produce nanoparticles with better homogeneity, smoother surface structure, and stronger photoluminescence intensity than using water. It was found that the concentration quenching limit of the as-prepared nanophosphors from both ethanol and water solution was 18 mol% Eu, which is higher than the reported limit at similar particle size. The x-ray diffraction (XRD) spectra showed that the ethanol precursor solvent produced monoclinic phase Y2O3:Eu nanoparticles at a lower flame temperature than previously reported. It was also shown that the particle size could be controlled by varying the precursor concentration and flame temperature.

2016 ◽  
Vol 16 (4) ◽  
pp. 3827-3830 ◽  
Author(s):  
Xiaolei Shi ◽  
Yun Liu ◽  
Jin Zhang ◽  
Kun Zhang ◽  
Peng Li ◽  
...  

Aseries of Bi1−xPO4:xEu3+ phosphors were prepared using a simple hydrothermal method. The effects of pH and Eu3+ doping on the structure, morphology and luminescence properties of BiPO4:Eu3+ were investigated systematically. X-ray diffraction (XRD) and field emission scanning electron microscope (FE-SEM) results reveal that the as-prepared BiPO4 crystals are in a low temperature monoclinic phase (LTMP), and have a rod-like structure with a size in the range of 1–5 μm at pH 1. Increasing the pH to 2 transforms the BiPO4 to its hexagonal phase (HP), with peanut-like structures ranging from 50 to 150 nm. At pH 1, when the doping level is increased to 0.07, the phase transformation from LTMP to HP occurs, meaning that the amount of HP components increase with increasing Eu3+ doping. Furthermore, all the diffraction peaks of the Bi1−xPO4:xEu3+ can be fitted very well to HP when x = 0.11. The photoluminescence (PL) spectra suggest that orangered luminescence can be observed in the series of BiPO4:Eu3+ phosphors, and that concentration quenching occurs when x = 0.07.


Author(s):  
M. Vallet-Regí ◽  
M. Parras ◽  
J.M. González-Calbet ◽  
J.C. Grenier

BaFeO3-y compositions (0.35<y<0.50) have been investigated by means of electron diffraction and microscopy to resolve contradictory results from powder X-ray diffraction data.The samples were obtained by annealing BaFeO2.56 for 48 h. in the temperature range from 980°C to 1050°C . Total iron and barium in the samples were determined using chemical analysis and gravimetric methods, respectively.In the BaFeO3-y system, according to the electron diffraction and microscopy results, the nonstoichiometry is accommodated in different ways as a function of the composition (y):In the domain between BaFeO2.5+δBaFeO2.54, compositional variations are accommodated through the formation of microdomains. Fig. la shows the ED pattern of the BaFeO2.52 material along thezone axis. The corresponding electron micrograph is seen in Fig. 1b. Several domains corresponding to the monoclinic BaFeO2.50 phase, intergrow with domains of the orthorhombic phase. According to that, the ED pattern of Fig. 1a, can be interpreted as formed by the superposition of three types of diffraction maxima : Very strong spots corresponding to a cubic perovskite, a set of maxima due to the superposition of three domains of the monoclinic phase along [100]m and a series of maxima corresponding to three domains corresponding to the orthorhombic phase along the [100]o.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 232
Author(s):  
Pedro J. Sánchez-Soto ◽  
Eduardo Garzón ◽  
Luis Pérez-Villarejo ◽  
George N. Angelopoulos ◽  
Dolores Eliche-Quesada

In this work, an examination of mining wastes of an albite deposit in south Spain was carried out using X-ray Fluorescence (XRF), X-ray diffraction (XRD), particle size analysis, thermo-dilatometry and Differential Thermal Analysis (DTA) and Thermogravimetric (TG) analysis, followed by the determination of the main ceramic properties. The albite content in two selected samples was high (65–40 wt. %), accompanied by quartz (25–40 wt. %) and other minor minerals identified by XRD, mainly kaolinite, in agreement with the high content of silica and alumina determined by XRF. The content of Na2O was in the range 5.44–3.09 wt. %, being associated with albite. The iron content was very low (<0.75 wt. %). The kaolinite content in the waste was estimated from ~8 to 32 wt. %. The particle size analysis indicated values of 11–31 wt. % of particles <63 µm. The ceramic properties of fired samples (1000–1350 °C) showed progressive shrinkage by the thermal effect, with water absorption and open porosity almost at zero at 1200–1250 °C. At 1200 °C, the bulk density reached a maximum value of 2.38 g/cm3. An abrupt change in the phase evolution by XRD was found from 1150 to 1200 °C, with the disappearance of albite by melting in accordance with the predictions of the phase diagram SiO2-Al2O3-Na2O and the system albite-quartz. These fired materials contained as main crystalline phases quartz and mullite. Quartz was present in the raw samples and mullite was formed by decomposition of kaolinite. The observation of mullite forming needle-shape crystals was revealed by Scanning Electron Microscopy (SEM). The formation of fully densified and vitrified mullite materials by firing treatments was demonstrated.


2020 ◽  
Vol 18 (1) ◽  
pp. 951-961
Author(s):  
Qiuju Chen ◽  
Tao Hui ◽  
Hongjuan Sun ◽  
Tongjiang Peng ◽  
Wenjin Ding

AbstractVarious morphologies of magnesium carbonate hydrate had been synthesized without using any organic additives by carefully adjusting the reaction temperature and time during the talc carbonation process. At lower temperatures, magnesium carbonate hydrate was prone to display needle-like morphology. With the further increase of the carbonation temperature, the sheet-like crystallites became the preferred morphology, and at higher aging temperatures, these crystallites tended to assemble into layer-like structures with diverse morphologies, such as rose-like particles and nest-like structure. The reaction time had no effect on the crystal morphology, but it affected the particle size and situation of the crystal growth. X-Ray diffraction results showed that these various morphologies were closely related to their crystal structure and compositions. The needle-like magnesium carbonate hydrate had a formula of MgCO3·3H2O, whereas with the morphological transformation from needle-like to sheet-like, rose-like, and nest-like structure, their corresponding compositions also changed from MgCO3·3H2O to 4MgCO3·Mg(OH)2·8H2O, 4MgCO3·Mg(OH)2·5H2O, and 4MgCO3·Mg(OH)2·4H2O.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
K. A. Athmaselvi ◽  
C. Kumar ◽  
M. Balasubramanian ◽  
Ishita Roy

This study evaluates the physical properties of freeze dried tropical (guava, sapota, and papaya) fruit powders. Thermal stability and weight loss were evaluated using TGA-DSC and IR, which showed pectin as the main solid constituent. LCR meter measured electrical conductivity, dielectric constant, and dielectric loss factor. Functional groups assessed by FTIR showed presence of chlorides, and O–H and N–H bonds in guava, chloride and C–H bond in papaya, and chlorides, and C=O and C–H bonds in sapota. Particle size and type of starch were evaluated by X-ray diffraction and microstructure through scanning electronic microscopy. A semicrystalline profile and average particle size of the fruit powders were evidenced by X-ray diffraction and lamellar/spherical morphologies by SEM. Presence of A-type starch was observed in all three fruits. Dependence of electric and dielectric properties on frequency and temperature was observed.


2009 ◽  
Vol 11 (41) ◽  
pp. 9431 ◽  
Author(s):  
Fabio Ramondo ◽  
Luana Tanzi ◽  
Marco Campetella ◽  
Lorenzo Gontrani ◽  
Giordano Mancini ◽  
...  

2017 ◽  
Vol 50 ◽  
pp. 18-31 ◽  
Author(s):  
Rudzani Sigwadi ◽  
Simon Dhlamini ◽  
Touhami Mokrani ◽  
Patrick Nonjola

The paper presents the synthesis and investigation of zirconium oxide (ZrO2) nanoparticles that were synthesised by precipitation method with the effects of the temperatures of reaction on the particles size, morphology, crystallite sizes and stability at high temperature. The reaction temperature effect on the particle size, morphology, crystallite sizes and stabilized a higher temperature (tetragonal and cubic) phases was studied. Thermal decomposition, band structure and functional groups were analyzed by Brunauer-Emmett-Teller (BET), Scanning Electron Microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Thermo-gravimetric analysis (TGA) and Fourier transform infrared (FT-IR). The crystal structure was determined using X-ray diffraction. The morphology and the particle size were studied using (SEM) and (TEM). The shaped particles were confirmed through the SEM analysis. The transmission electron microscopic analysis confirmed the formation of the nanoparticles with the particle size. The FT-IR spectra showed the strong presence of ZrO2 nanoparticles.


2015 ◽  
Vol 645-646 ◽  
pp. 1339-1344 ◽  
Author(s):  
Yan Ting Yin ◽  
Qing Hua Chen ◽  
Ting Ting Yan ◽  
Qing Hua Chen

The objective of this study was to develop a novel silica modified large-sized hydroxyapatite whiskers with improved properties for use in bone repair applications. Large-sized whiskers with a mean length of 250μm were obtained by a hydrothermal co-precipitation method at 150°C, 7.5Mpa in high-pressure reactor. Silica modified hydroxyapatite whiskers were prepared by dissolving TEOS in ethanol solution, then sintering with hydroxyapatite. The compositional and morphological properties of prepared whiskers were studied by means of x-ray diffraction (XRD), Fouier transform infrared (FT-IR), scanning electron microscopy (SEM). The results indicated the evidence of nanosilicon dioxide particles on the surface of HAP whiskers. The size of nanosilicon dioxide particles depends on dropping and stirring rate. Hence, this new type of silica modified large-sized hydroxyapatite whiskers is a valuable candidate for biomedical applications.Key words: hydroxyapatite, hydrothermal co-precipitation, surface modified, whiskers


Author(s):  
Rajni Bhardwaj ◽  
Smita Johar ◽  
Amit Kapila ◽  
Amandeep Sharma

Swarnamakshika is grouped under Updhatu of Swarna and is composed of Copper, Iron and Sulphur. In this study Swarnamakshika was subjected to Shodhana by Bharjana with Nimbuka swarasa and Shudha Swarnamakshika was given Bhavana with Nimbuka swarasa and subjected to Varahaputa. With ten Varahaputa Bhasma Siddhi Lakshanas were attained swarnamakshika Marana was done by using Nimbuka swarasa until bhasma siddi lakshanas found and it took 10 puta till it attained reddish brown color. The X-ray diffraction analysis showed that d-identified peaks after 10th puta Swarnamakshika bhasma composition is of Iron oxide with rhombohedral crystal system as main component. EDX analysis of Swarna makshika bhasma shows that it contains Iron and Oxygen, as major element and Copper, Sulphur, Carbon, Aluminium, Calcium etc. as minor elements. FESEM study revealed that the particle size of Ashudha and Shudha Swarnamakshika was in the range of 500 nm-3nm. Keywords: Swarnamakshika Bhasma, Nimbuka swarasa, puta


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244511
Author(s):  
Fernando Gordillo-Delgado ◽  
Jakeline Zuluaga-Acosta ◽  
Gonzalo Restrepo-Guerrero

In this work, the effect of the inoculation of silver-incorporated titanium dioxide nanoparticles (Ag-TiO2 NPs) in spinach seeds was evaluated on certain growth, physiology and phytotoxicity parameters of the plants. This is an important crop for human consumption with high nutritional value due to their low calorie and fat content, providing various vitamins and minerals, especially iron. These NPs were obtained by means of the sol-gel method and heat treatment; the resulting powder material was characterized using X-ray diffraction and scanning electron microscopy and the influence of these NPs on plants was measured by estimating the germination rate, monitoring morphological parameters and evaluating phytotoxicity. The photosynthetic activity of the spinach plants was estimated through the quantification of the Ratio of Oxygen Evolution (ROE) by the photoacoustic technique. Samples of TiO2 powder with particle size between 9 and 43 nm were used to quantify the germination rate, which served to determine a narrower size range between 7 and 26 nm in the experiments with Ag-TiO2 NPs; the presence of Ag in TiO2 powder samples was confirmed by energy-dispersive X-ray spectroscopy. The analysis of variance showed that the dependent variable (plant growth) could be affected by the evaluated factors (concentration and size) with significant differences. The statistical trend indicated that the application of the Ag-TiO2 NPs suspension of lowest concentration and smallest particle size could be a promoting agent of the growth and development of these plants. The inoculation with NPs of 8.3 nm size and lowest concentration was related to the highest average ROE value, 24.6 ± 0.2%, while the control group was 20.2 ± 0.2%. The positive effect of the Ag-TiO2 NPs treatment could be associated to the generation of reactive oxygen species, antimicrobial activity, increased biochemical attributes, enzymatic activity or improvements in water absorption.


Sign in / Sign up

Export Citation Format

Share Document