Enhancement of plasticity in Ti-rich Ti–Zr–Be–Cu–Ni–Ta bulk glassy alloy via introducing the structural inhomogeneity

2008 ◽  
Vol 23 (11) ◽  
pp. 2984-2989 ◽  
Author(s):  
Jin Man Park ◽  
Do Hyang Kim ◽  
Ki Buem Kim ◽  
Eric Fleury ◽  
Min Ha Lee ◽  
...  

The effect of microstructural inhomogeneities with different length scale on the plasticity of (Ti45Zr16Be20Cu10Ni9)100–xTax (x = 0, 5, and 10) bulk glassy alloys has been studied. The formation of specific heterogeneous microstructures with a different type of structural inhomogeneity, i.e., short-/medium-range ordered clusters or micrometer-scale ductile dendrites combined with a glassy matrix, evolved by appropriately tuning the alloy chemistry, improves the room temperature plasticity up to ∼12.5% and ∼15%, respectively. The pronouncedly enhanced plasticity is mainly attributed to the retardation of shear localization and multiplication of shear bands by controlling the plastic and failure instabilities otherwise responsible for premature failure.

2007 ◽  
Vol 22 (4) ◽  
pp. 1087-1092 ◽  
Author(s):  
Dmitri V. Louzguine-Luzgin ◽  
Yuqiao Zeng ◽  
Albertus Deny Heri Setyawan ◽  
Nobuyuki Nishiyama ◽  
Hidemi Kato ◽  
...  

This article presents a comparative study of the deformation-induced structural changes observed within a glassy phase in two different Zr- and Ni-based alloys. Ductile Zr65Al7.5Ni10Pd17.5 bulk glassy alloy, which exhibits dynamic nanocrystallization forming a crystalline cubic phase within shear bands on plastic deformation, is presumed to contain pre-existing nuclei. On the contrary, no obvious dynamic nanocrystallization is observed within the shear bands in the glassy phase of the Ni50Pd30P20 bulk alloy, which, however, contains clear medium-range order zones on the order of 1 nm in size in an as-solidified state. This alloy exhibits nucleation and growth-transformation behavior on heating. At the same time, clear nucleation and growth of the cubic Ni-based phase are observed near the microcrack area in the deformed sample. High energy released at the time of the microcrack propagation caused nanocrystallization and blockage of the crack-tip propagation.


2013 ◽  
Vol 652-654 ◽  
pp. 1143-1148
Author(s):  
Peng Jun Cao ◽  
Ji Ling Dong ◽  
Hai Dong Wu ◽  
Pei Geng Fan

The Cu-based bulk glassy alloys in Cu-Zr-Ti-Ni systems were prepared by means of copper mold casting. The structure and corrosion resistance of Cu-based bulk glassy alloys were analyzed by X-ray diffraction (XRD), differential scanning calorimetry (DSC), electrochemistry method, lost weight method. The result indicates the supercooled liquid temperature interval (ΔTx) is up to 70.98 K for Cu50Zr25Ti15Ni10bulk glassy alloy. The maximum diameter was up to 5.0 mm for the Cu55Zr25Ti15Ni5bulk glassy alloy. For electrochemistry corrosion in 3.5% NaCl solution, self-corrosion electric current density of the Cu50Zr25Ti15Ni10bulk glassy alloys is obviously lower than that of stainless steel and brass, so corrosion resistance of Cu-based bulk glassy alloys is better than stainless steel and brass at the same corrosion condition. The lost weight method showed that the corrosion rate of brass, stainless steel and glassy alloy is respectively 10.08 g/(m2•h), 6.08 g/(m2•h) and 2.19 g/(m2•h) in the 3% NaCl solution, which also indicates that the corrosion resistance of Cu-based bulk glassy alloys is better than stainless steel and brass. The Cu-based bulk glassy alloys can be used in the special field demanding to have the super high strength, hardness and corrosion resistance.


2005 ◽  
Vol 20 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Baolong Shen ◽  
Akihisa Inoue

Glassy [(Fe0.8Co0.1Ni0.1)0.75B0.2Si0.05]96Nb4 alloy rods with glass transition temperature of 835 K, followed by a large supercooled liquid region of 55 K were produced in the diameter range up to 2 mm by copper mold casting. The glassy alloy rods exhibit super-high true fracture strength of 4225 MPa combined with elastic strain of 0.02 and true plastic strain of 0.005. The super-high strength alloy simultaneously exhibits high magnetization of 1.1 T, low coercivity of 3 A/m, and high permeability of 1.8 × 104 at 1 kHz. The success of synthesizing a super-high strength Fe-based bulk glassy alloy with some compressive plastic strain and good soft magnetic properties is encouraging for future development of Fe-based bulk glassy alloys as new engineering and functional materials.


2000 ◽  
Vol 644 ◽  
Author(s):  
Hidemi Kato ◽  
Tomoya Hirano ◽  
Akihisa Inoue ◽  
Yoshihito Kawamura ◽  
H. S. Chen

AbstractCylindrical composite Zr55Al10Ni5Cu30 bulk glassy alloys containing up to 17.5 vol.% ZrC particles were prepared with using an in-situ reaction forming ZrC between graphite particles with diameters of ∼10 m and Zr metal in molten alloy during arc-melting followed by copper mold casting. Because the in-situ reaction suppresses an agglomeration and segregation among dispersoids in the glassy matrix, mechanical properties of the composite materials at room temperature, especially toughness and plastic elongation, were significantly improved from the Zr55Al10Ni5Cu30 single glassy phase. In order to demonstrate the influence of the dispersed ZrC particles on workability of the supercooled liquid of the alloy, viscous flow behaviors under constant strain-rates were investigated. Although the Newtonian viscosity becomes larger, the composite material has the same viscoelastic properties, i.e., “shear thinning”, and excellent workability as the single glassy phase in spite of the dispersed particles.


2001 ◽  
Vol 16 (10) ◽  
pp. 2836-2844 ◽  
Author(s):  
Akihisa Inoue ◽  
Wei Zhang ◽  
Tao Zhang ◽  
Kei Kurosaka

High-strength Cu-based bulk glassy alloys were formed in the Cu–Hf–Ti system by the copper mold casting and melt clamp forging methods. The maximum diameter is 4 mm for the Cu60Hf25Ti15 alloy. The substitution of Hf in the Cu60Hf40 alloy by Ti causes an increase in the glass-forming ability (GFA). As the Ti content increases, the glass transition temperature (Tg) decreases, while the crystallization temperature (Tx) shows a maximum at 5% Ti and then decreases, resulting in a maximum supercooled liquid region ΔTx (= Tx − Tg) of 78 K at 5% Ti. The liquidus temperature (T1) has a minimum of 1172 K around 20% Ti, and hence, a maximum Tg//T1 of 0.62 is obtained at 20% Ti. The high GFA was obtained at the compositions with high Tg/T1. The bulk glassy alloy exhibits tensile fracture strength of 2130 MPa, compressive fracture strength of 2160 MPa, and compressive plastic elongation of 0.8 to 1.6%. The new Cu-based bulk glassy alloys with high Tg/T1 above 0.60, high fracture strength above 2100 MPa, and distinct plastic elongation are encouraging for future development as a new type of bulk glassy alloy that can be used for structural materials.


2005 ◽  
Vol 19 (22) ◽  
pp. 3493-3500 ◽  
Author(s):  
L. XIA ◽  
C. L. JO ◽  
Y. D. DONG

Nd 55 Al 20 Fe 25 bulk sample was prepared in the shape of rods 3 mm in diameter by suction casting. The sample exhibits typical amorphous characters in XRD pattern, distinct glass transition in DSC traces and hard magnetic properties. The distinct glass transition, which is invisible in DSC traces of previously reported Nd — Al — Fe ternary BMGs, allows us to investigate the glass forming ability (GFA) of Nd 55 Al 20 Fe 25 alloy using the reduced glass transition temperature Trg and the recently defined parameter γ. However, it is found that the obtained diameter of the Nd 55 Al 20 Fe 25 glassy rod is much larger than the critical section thickness of the BMG predicted by either Trg or γ. The microstructure of Nd 55 Al 20 Fe 25 as-cast rod was studied and the apparent GFA of the alloy was supposed to be enhanced by the metastable nano-precipitates dispersed within the glassy matrix.


2007 ◽  
Vol 22 (2) ◽  
pp. 358-363 ◽  
Author(s):  
Q.J. Chen ◽  
J. Shen ◽  
D.L. Zhang ◽  
H.B. Fan ◽  
J.F. Sun

The mechanical properties of a new Fe41Co7Cr15Mo14Y2C15B6 bulk glassy alloy were studied by impact bending, compression, and hardness tests carried out at room temperature. The compressive fracture strength, elastic strain to fracture, Young’s modulus and Vickers hardness were measured to be 3.5 GPa, 1.5%, 265 GPa, and 1253 kg mm−2, respectively. The fracture mode of the glassy alloy under uniaxial compression is different from those of other bulk metallic glasses in that this fracture mode causes the samples to be broken, in an exploding manner, into a large number of micrometer-scale pieces. The fracture mechanisms of this bulk glassy alloy under bending and uniaxial compression are discussed based on the observation of the fracture surfaces. Vickers indentation tests indicate that the structure of the glassy ingot may be inhomogeneous.


2012 ◽  
Vol 488-489 ◽  
pp. 861-865 ◽  
Author(s):  
Amir Seifoddini ◽  
Mahmoud Nili Ahmadabadi ◽  
Saeed Heshmati-Manesh ◽  
Mihai Stoica ◽  
Uta Kuehn ◽  
...  

Bulk metallic glasses have interesting mechanical properties, such as high strength up to 5 GPa, high elastic strain and many other additional desirable properties. However, BMGs beyond the elastic region fail catastrophically on one dominant shear band and show little macroscopic plasticity in an apparently brittle manner. Nano-crystallized BMGs have been found to possess better ductility comparing with brittle parent BMGs. Annealing treatment of glassy alloys is a useful method to prepare bulk nano-crystalline alloys. In the present study, the crystallization trend of the FeCoCrMoCBY alloy which is claimed to have the best glass forming ability was studied in various times in temperature ranges of a) between Tg (glassy temp.) and Tx1 (first crystallization temp.), and b) between Tx1 and Tx2 (second crystallization temp.). The influences of different annealing time and temperatures on the microstructure and microhardness of Fe41Co7Cr15Mo14Y2C15B6BMG are reported in this paper.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Na Chen ◽  
Hongxia Zhang ◽  
Ke-Fu Yao

Glassy spherical samples in the diameters up to 10 mm were produced in a binary Pd-Si alloy system. These Pd-Si bulk metallic glasses (BMGs) combine high strength of about 1600 MPa and superplasticity of over 70% together. In addition to abundant micrometer-scale shear bands, 10–20 nanometer-sized shear bands were also observed on the side surface of the deformed sample. The excellent ductility shown by the Pd-Si BMGs is suggested to arise from the nanoscale structural inhomogeneity.


2007 ◽  
Vol 561-565 ◽  
pp. 1421-1424
Author(s):  
Wei Zhang ◽  
Kunio Arai ◽  
J. Qiang ◽  
C. Qin ◽  
F. Jia ◽  
...  

The addition of Ti and Zr to Ni-Ta binary alloys is effective for the increase in stabilization of supercooled liquid and glass-forming ability (GFA). As the Ti content increases, the supercooled liquid region Tx and reduced glass transition temperature (Tg/Tl) of Ni60Ta40-xTix glassy alloys increase, show maximum values of 63 K at 20 at.%Ti and 0.589 at 25 at.%Ti, respectively, and then gradually decrease. The addition of 5 at.% Zr to Ni-Ta-Ti alloys lowers liquidus temperature (Tl), resulting in the higher Tg/Tl values of 0.600. The best GFA were obtained for Ni60Ta15Ti20Zr5 and Ni60Ta20Ti15Zr5 alloys and the glassy alloy samples with a diameter of 1.0 mm were fabricated. The new Ni-Ta-based bulk glassy alloys exhibit high Tg of ~897 K, large ΔTx of ~74 K, high strength of over 3180 MPa with plastic strains of ~0.4% and excellent corrosion resistance in 1 N HCl solution.


Sign in / Sign up

Export Citation Format

Share Document