Improving tensile and fatigue properties of Sn–58Bi/Cu solder joints through alloying substrate

2010 ◽  
Vol 25 (2) ◽  
pp. 303-314 ◽  
Author(s):  
QingKe Zhang ◽  
HeFei Zou ◽  
Zhe-Feng Zhang

To eliminate the Bi segregation and interfacial embrittlement of the SnBi/Cu joints, we deliberately added some Ag or Zn elements into the Cu substrate. Then, the reliability of the SnBi/Cu–X (X = Ag or Zn) solder joints was evaluated by investigating their interfacial reactions, tensile property, and fatigue life compared with those of the SnBi/Cu and SnAg/Cu joints. The experimental results demonstrate that even after aging for a long time, the addition of the Ag or Zn elements into the Cu substrate can effectively eliminate the interfacial Bi embrittlement of the SnBi/Cu–X joints under tensile or fatigue loadings. Compared with the conventional SnAg/Cu joints, the SnBi/Cu–X joints exhibit higher adhesive strength and comparable fatigue resistance. Finally, the fatigue and fracture mechanisms of the SnBi/Cu–X solder joints were discussed qualitatively. The current findings may pave the new way for the Sn–Bi solder widely used in the electronic interconnection in the future.

Author(s):  
Yuji Nishimura ◽  
Qiang Yu

Recently, the downsizing of car components becomes a big trend for the development of car electronics, and it is becoming very difficult to achieve the reliability results target without managing controlling the dispersion of the fatigue lives. The authors proposed an isothermal fatigue test method using small size solder joints to get the fatigue properties. The Manson-Coffin’s law given by this method could improve the correspondence between the simulation results and experimental results. Based upon the Manson-Coffin’s law and Miner’s law, the authors proposed a fatigue crack propagation simulation approach. Furthermore, in order to consider the heterogeneity of PCB due to the distribution of fiber network, the authors made heterogeneous model considering the distribution of the fiber. And the authors evaluated the fatigue life of solder joints in chip components with considering dispersion of the material properties by using the heterogeneous model.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Minghong Jian ◽  
Sinan Su ◽  
Sa'd Hamasha ◽  
Mohammad M. Hamasha ◽  
Atif Alkhazali

Abstract The reliability of solder joints plays a critical role in electronic assemblies. SnAgCu solder alloys with doped elements such as Bi and Sb is one of the candidates for high reliability applications. However, the mechanical and fatigue properties of the actual solder joint structure have not been studied for these new alloys. In this paper, a cyclic fatigue test was conducted on individual real solder joints of different alloys, including SnAgCu, SnCu–Bi, SnAgCu–Bi, and SnAgCu–BiSb. The fatigue property of those solder joints was analyzed based on the characteristic fatigue life and stress–strain, hysteresis, loops. The results show that solder joints with both Ag and Bi content have a better fatigue resistance than the solder joints with Ag or Bi content only. The results of SnAgCu and SnCu–Bi solder alloys show similar fatigue performance. Also, the fatigue performance of SnAgCu–Bi is close to SnAgCu–BiSb in the accelerated test. But the SnAgCu–Bi alloy is estimated to have a longer characteristic life under low-stress amplitude cycling. The microstructure analysis shows a bismuth-rich phase formed around the Ag3Sn precipitates. Adding bismuth in the solder alloy can significantly improve the fatigue properties through solid solution hardenings. On another hand, the plastic strain range and work dissipation were measured from the hysteresis loops for all tests. The Morrow Energy and the Coffin–Manson models were developed from the fitted data to predict the fatigue life as a function of work dissipation and plastic strain range.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2738
Author(s):  
Roland Pawliczek ◽  
Tadeusz Lagoda

The literature in the area of material fatigue indicates that the fatigue properties may change with the number of cycles. Researchers recommend taking this into account in fatigue life calculation algorithms. The results of simulation research presented in this paper relate to an algorithm for estimating the fatigue life of specimens subjected to block loading with a nonzero mean value. The problem of block loads using a novel calculation model is presented in this paper. The model takes into account the change in stress–strain curve parameters caused by mean strain. Simulation tests were performed for generated triangular waveforms of strains, where load blocks with changed mean strain values were applied. During the analysis, the degree of fatigue damage was compared. The results of calculations obtained for standard values of stress–strain parameters (for symmetric loads) and those determined, taking into account changes in the curve parameters, are compared and presented in this paper. It is shown that by neglecting the effect of the mean strain value on the K′ and n′ parameters and by considering only the parameters of the cyclic deformation curve for εm = 0 (symmetric loads), the ratio of the total degree of fatigue damage varies from 10% for εa = 0.2% to 3.5% for εa = 0.6%. The largest differences in the calculation for ratios of the partial degrees of fatigue damage were observed in relation to the reference case for the sequence of block n3, where εm = 0.4%. The simulation results show that higher mean strains change the properties of the material, and in such cases, it is necessary to take into account the influence of the mean value on the material response under block loads.


Metals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 476 ◽  
Author(s):  
Chao Gu ◽  
Min Wang ◽  
Yanping Bao ◽  
Fuming Wang ◽  
Junhe Lian

The fatigue property is significantly affected by the inner inclusions in steel. Due to the inhomogeneity of inclusion distribution in the micro-scale, it is not straightforward to quantify the effect of inclusions on fatigue behavior. Various investigations have been performed to correlate the inclusion characteristics, such as inclusion fraction, size, and composition, with fatigue life. However, these studies are generally based on vast types of steels and even for a similar steel grade, the alloy concept and microstructure information can still be of non-negligible difference. For a quantitative analysis of the fatigue life improvement with respect to the inclusion engineering, a systematic and carefully designed study is still needed to explore the engineering dimensions of inclusions. Therefore, in this study, three types of bearing steels with inclusions of the same types, but different sizes and amounts, were produced with 50 kg hot state experiments. The following forging and heat treatment procedures were kept consistent to ensure that the only controlled variable is inclusion. The fatigue properties were compared and the inclusions that triggered the fatigue cracks were analyzed to deduce the critical sizes of inclusions in terms of fatigue failure. The results show that the critical sizes of different inclusion types vary in bearing steels. The critical size of the spinel is 8.5 μm and the critical size of the calcium aluminate is 13.5 μm under the fatigue stress of 1200 MPa. In addition, with the increase of the cleanliness of bearing steels, the improvement of fatigue properties will reach saturation. Under this condition, further increasing of the cleanliness of the bearing steel will not contribute to the improvement of fatigue property for the investigated alloy and process design.


2001 ◽  
Vol 42 (5) ◽  
pp. 809-813 ◽  
Author(s):  
Young-Eui Shin ◽  
Kyung-Woo Lee ◽  
Kyong-Ho Chang ◽  
Seung-Boo Jung ◽  
Jae Pil Jung

Author(s):  
Tae-Yong Park ◽  
Hyun-Ung Oh

Abstract To overcome the theoretical limitations of Steinberg's theory for evaluating the mechanical safety of the solder joints of spaceborne electronics in a launch random vibration environment, a critical strain-based methodology was proposed and validated in a previous study. However, for the critical strain-based methodology to be used reliably in the mechanical design of spaceborne electronics, its effectiveness must be validated under various conditions of the package mounting locations and the first eigenfrequencies of a printed circuit board (PCB); achieving this validation is the primary objective of this study. For the experimental validation, PCB specimens with ball grid array packages mounted on various board locations were fabricated and exposed to a random vibration environment to assess the fatigue life of the solder joint. The effectiveness of the critical strain-based methodology was validated through a comparison of the fatigue life of the tested packages and their margin of safety, which was estimated using various analytical approaches.


Sign in / Sign up

Export Citation Format

Share Document