Microphase-separated block copolymer film anchored on ITO substrate with newly designed self-assembled monolayer

2011 ◽  
Vol 1302 ◽  
Author(s):  
Takenori Goda ◽  
Shingo Hadano ◽  
Tomokazu Iyoda

ABSTRACTThe surface of Indium-tin-oxide (ITO) substrate was modified with a newly designed silane coupling molecule bearing azobenzene moiety. The silane coupling molecules formed self-assembled monolayer (SAM) on pretreated ITO surface. The SAM growth and coverage were quantified by contact angle measurement and X-ray photoelectron spectroscopy (XPS). The silane coupling molecules improved the adhesion between the ITO surface and an amphiphilic block copolymer (BC) thin film, which consists of poly(ethylene oxide) (PEO) and poly(methacrylate) (PMA) with azobenzene mesogens, because the azobenzene moieties of the SAM anchor the liquid crystalline PMA azobenzene domains of BC.

2008 ◽  
Vol 373-374 ◽  
pp. 645-648 ◽  
Author(s):  
Bao Feng Cui ◽  
Jian Min Chen ◽  
Jun Yan Zhang ◽  
Hui Di Zhou

The fourth generation of poly amide amine molecular self-assembled monolayer (PAMAM (G4.0)-SAM) was prepared on hydroxylated Si (111) substrate by a self-assembled technique from specially formulated solution. The PAMAM (G4.0)-SAM were characterized by means of contact angle measurement, ellipsometry, X-ray photoelectron spectroscope (XPS), and atomic force microscopy (AFM). The tribological properties of the as-prepared thin films sliding against a steel ball were evaluated on a friction and wear tester. The tribological results show that the friction coefficient of monocrystal line silicon substrate reduces from 0.6 to 0.18 due to the formation of PAMAM-SAMs on its surface. And the PAMAM (G4.0) -SAM has longer wear life (18000 sliding pass). It is demonstrated that PAMAM (G4.0) -SAM exhibited good wear resistant property. In conclusion, the PAMAM (G4.0)-SAM which possesses good wear resistant property was successfully prepared and the film.


Author(s):  
D. F. Lim ◽  
X. F. Ang ◽  
J. Wei ◽  
C. M. Ng ◽  
C. S. Tan

In this article, a self-assembled monolayer (SAM) is applied onto the copper surface in an attempt to lower the required bonding temperature. Alkane-thiol with 6-carbon chain length is used and tested for bonding experiment. The adsorption of SAM is confirmed by the sharp rise of the water contact angle measurement and the reduced in the surface roughness. Next, the desorption of SAM is done at a high temperature anneal (<300°C) in an inert ambient and its properties are characterized by the water contact angle measurement and XPS. It is found that the water contact angle measurement decreases sharply close back to the contact angle of the pure blanket copper surface after annealing of SAM. The XPS results also show the ability of SAM in protecting Copper surface from oxidation. Finally, shear test is performed on Cu-Cu structures bonded at low temperature (250°C) in order to verify the SAM behavior in protecting the copper surface from oxidation and enhancement for bonding. The wafer pairs with and without SAM are intentionally exposed in clean room environment for few days. The bonded pieces are diced and subject to shear stress and results show that with SAM protection, shear strength is improved due to the enhancement in grain growth as a result of cleaner surface.


2015 ◽  
Vol 25 (2) ◽  
pp. 173
Author(s):  
Nguyen Hoang Phuong Uyen ◽  
Gajovic-Eichelmann Nenad ◽  
Frank. F. Bier ◽  
Ngo Vo Ke Thanh

An antigen modified gold electrode based on a self-assembled lipoic acid monolayer has been developed. The contact angle measurement and cyclic voltammetry confirm the formation of a dense self-assembled monolayer on gold from 100 mM lipoic acid in ethanol. The electrochemical behavior shows a stable activity in a range of potential from -0.2 V to 0.65 V vs. Ag/AgCl. By applying a potential of 1 V vs. Ag/AgCl the monolayer is completely removed by oxidative desorption and a clean gold surface re-established. This allows for an easy renewal of the gold surface and recycling of modified immunosensor chips. This lipoic acid monolayer was covalently functionalized with a small molecule antigen synthesized from progesterone-3-(O-carboxymethyl)oxime and 4,7,10-trioxa-1,13 tridecanediamine to form a well ordered, low unspecific binding, antigen layer for an antibody-antigen interaction study.The effectiveness of antigen - antibody binding reaction was demonstrated by fluorescence imaging using a fluorescence-labeled anti-progesterone antibody as the binding partner. The new approach represents a way of improving the surface chemistry of electrochemical, surface-plasmon resonance and QCM-based immunosensors for which reusability, simplicity and sensitivity in flow-injection mode are required.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5137
Author(s):  
Michal Cichomski ◽  
Milena Prowizor ◽  
Dorota Anna Kowalczyk ◽  
Andrzej Sikora ◽  
Damian Batory ◽  
...  

This study compared the tribological properties in nano- and millinewton load ranges of Ti‑6Al-4V surfaces that were modified using self-assembled monolayers (SAMs) of carboxylic and phosphonic acids. The effectiveness of the creation of SAMs with the use of the liquid phase deposition (LPD) technique was monitored by the contact angle measurement, the surface free energy (SFE) calculation, X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy (FTIR) measurements. The obtained results indicated that more stable and well-ordered layers, which were characterized by the lowest values of the coefficient of friction, adhesion, and wear rate, were obtained using phosphonic acid as a surface modifier. Based on the obtained results, it was found that the Ti-6Al-4V alloy modified by phosphonic acid would be the most advantageous for practical applications, especially in micro- and nanoelectromechanical systems (MEMS/NEMS).


Crystals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 26
Author(s):  
Myung-Gyun Baek ◽  
Johng-Eon Shin ◽  
Sang-Geon Park

Herein, we confirm the performance difference according to the structure of self-assembling monolayer (SAM) and investigate the characteristics of the indium tin oxide (ITO) surface when ITO substrates are deposited by (3,3,3-trifluoropropyl)trimethoxysilane (F-3SAM) and (heptadecafluoro-1,1,2,2-tetrahydrodecyl)triethoxysilane (F-10SAM) having different chain lengths with trifluoromethyl group as terminal functional group, as well as SAM benzoic acid (BA) and 2-naphthoic acid (NA) with benzene ring forms. Through these, it is possible to control the wetting properties, surface roughness, and work function of the ITO surface. Wetting characteristics, average roughness, and changes in work function of the ITO surface were characterized by contact angle measurement, atomic force microscopy (AFM), and UV photoelectron spectroscopy (UPS). The measured contact angles were 41.1°, 82.25°, and 118° for the bare ITO, NA, and F-10SAM, respectively, the average roughnesses of the SAM-modified surfaces were 1.377, 1.033, and 0.838 nm for the bare ITO, NA, and F-10SAM, respectively. The work function of the ITO surface modified with NA and F-10SAM increased from 0.21 and 0.36 eV to 5.01 and 5.16 eV, respectively. As a result, the surface properties of ITO were better for aliphatic SAM than for aromatic ring SAM.


2021 ◽  
Vol 9 ◽  
Author(s):  
Li Chen ◽  
Gang Wu ◽  
Yin Huang ◽  
Changning Bai ◽  
Yuanlie Yu ◽  
...  

Taking advantage of the strong charge interactions between negatively charged graphene oxide (GO) sheets and positively charged poly(diallyldimethylammonium chloride) (PDDA), self-assembled multilayer films of (GO/PDDA)n were created on hydroxylated silicon substrates by alternating electrostatic adsorption of GO and PDDA. The formation and structure of the films were analyzed by means of water contact angle measurement, thickness measurement, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Meanwhile, tribological behaviors in micro- and macro- scale were investigated by AFM and a ball-on-plate tribometer, respectively. The results showed that (GO/PDDA)n multilayer films exhibited excellent friction-reducing and anti-wear abilities in both micro- and macro-scale, which was ascribed to the special structure in (GO/PDDA)n multilayer films, namely, a well-stacked GO–GO layered structure and an elastic 3D crystal stack in whole. Such a film structure is suitable for design molecular lubricants for MEMS and other microdevices.


Sign in / Sign up

Export Citation Format

Share Document