Thin-film Micro-Batteries Based on Metal Nanoparticles

2012 ◽  
Vol 1440 ◽  
Author(s):  
Shuang Peng ◽  
Wenjun Du ◽  
Leela Rakesh ◽  
Axel Mellinger ◽  
Tolga Kaya

ABSTRACTWe proposed the use of Copper (Cu) and Zinc (Zn) nanoparticles as the electrodes for thin-film microbatteries in the applications of micro-scale sensors. Compared to the widely used lithium-based batteries, Cu and Zn nanoparticles are less expensive, less prone to oxidation (thus involving simpler fabrication steps) and flammability, safe to use, and only requires very simple fabrication processes.Even though the voltage output is inherently smaller (∼1V) than conventional lithium-based batteries, it is sufficient for low-voltage Integrated Circuits (IC) technologies such as 130 nm and 90 nm channel length transistor processes.Commercial paper will be used as the separator to demonstrate the battery capacity. Paper that acts as the separator is slurry-casted with nanoparticles (30-40 nm in size) on both sides. The thickness of the metal nanoparticles-coated thin films and the paper separator are 1 μm and 100 μm, respectively.The electrodes were developed to achieve high conductivity (lower than 1 (Ω·cm)-1) with smooth surface, good adhesion, and flexibility. The metal nanoparticles will be formulated to slurry solutions for screen printing or ink-jet printing for the battery fabrication. For fabrication purposes, the slurries viscosity is approximately in the range of 10-12 cPs at the operating temperature, a surface tension between 28-33 dynes/cm. During the fabrication process including printing/coating and sintering, reductive environment is required to minimize the oxidation. AFM (Atomic Force Microscopy) and EDS (Energy Dispersive Spectroscopy) results will be employed to demonstrate the surface morphology as well as the percentages of metal oxides. Batteries will be tested with and without an ionic liquid for comparison. Humidity effects on the battery performance will also be discussed.Different geometries that are designed to make the batteries with higher voltage or charge will be proposed. Characterization results will include the open-circuit voltage, dielectric property, charging and discharging curve, capacitance and capacity, AFM of the surface test, EDS of the electrodes and the SEM (Scanning Electron microscopy) of the particles.Ourresearch suggest that conductive paper can be scalable and could make high-performance energy storage and conversion devices at low cost and would bring new opportunities for advanced applications.

2016 ◽  
Vol 4 (20) ◽  
pp. 4478-4484 ◽  
Author(s):  
Ao Liu ◽  
Guoxia Liu ◽  
Huihui Zhu ◽  
Byoungchul Shin ◽  
Elvira Fortunato ◽  
...  

Eco-friendly IWO thin films are fabricated via a low-cost solution process and employed as channel layers in thin-film transistors.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 261
Author(s):  
Te Jui Yen ◽  
Albert Chin ◽  
Weng Kent Chan ◽  
Hsin-Yi Tiffany Chen ◽  
Vladimir Gritsenko

High-performance p-type thin-film transistors (pTFTs) are crucial for realizing low-power display-on-panel and monolithic three-dimensional integrated circuits. Unfortunately, it is difficult to achieve a high hole mobility of greater than 10 cm2/V·s, even for SnO TFTs with a unique single-hole band and a small hole effective mass. In this paper, we demonstrate a high-performance GeSn pTFT with a high field-effect hole mobility (μFE), of 41.8 cm2/V·s; a sharp turn-on subthreshold slope (SS), of 311 mV/dec, for low-voltage operation; and a large on-current/off-current (ION/IOFF) value, of 8.9 × 106. This remarkably high ION/IOFF is achieved using an ultra-thin nanosheet GeSn, with a thickness of only 7 nm. Although an even higher hole mobility (103.8 cm2/V·s) was obtained with a thicker GeSn channel, the IOFF increased rapidly and the poor ION/IOFF (75) was unsuitable for transistor applications. The high mobility is due to the small hole effective mass of GeSn, which is supported by first-principles electronic structure calculations.


Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 929
Author(s):  
Qi Li ◽  
Junchen Dong ◽  
Dedong Han ◽  
Yi Wang

InSnO (ITO) thin-film transistors (TFTs) attract much attention in fields of displays and low-cost integrated circuits (IC). In the present work, we demonstrate the high-performance, robust ITO TFTs that fabricated at process temperature no higher than 100 °C. The influences of channel thickness (tITO, respectively, 6, 9, 12, and 15 nm) on device performance and positive bias stress (PBS) stability of the ITO TFTs are examined. We found that content of oxygen defects positively correlates with tITO, leading to increases of both trap states as well as carrier concentration and synthetically determining electrical properties of the ITO TFTs. Interestingly, the ITO TFTs with a tITO of 9 nm exhibit the best performance and PBS stability, and typical electrical properties include a field-effect mobility (µFE) of 37.69 cm2/Vs, a Von of −2.3 V, a SS of 167.49 mV/decade, and an on–off current ratio over 107. This work paves the way for practical application of the ITO TFTs.


2013 ◽  
Vol 14 (3) ◽  
pp. 775-781 ◽  
Author(s):  
Yaorong Su ◽  
Mingdong Wang ◽  
Fangyan Xie ◽  
Jian Chen ◽  
Weiguang Xie ◽  
...  

Author(s):  
C.K. Wu ◽  
P. Chang ◽  
N. Godinho

Recently, the use of refractory metal silicides as low resistivity, high temperature and high oxidation resistance gate materials in large scale integrated circuits (LSI) has become an important approach in advanced MOS process development (1). This research is a systematic study on the structure and properties of molybdenum silicide thin film and its applicability to high performance LSI fabrication.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhuang Hui ◽  
Ming Xiao ◽  
Daozhi Shen ◽  
Jiayun Feng ◽  
Peng Peng ◽  
...  

Abstract With the increase in the use of electronic devices in many different environments, a need has arisen for an easily implemented method for the rapid, sensitive detection of liquids in the vicinity of electronic components. In this work, a high-performance power generator that combines carbon nanoparticles and TiO2 nanowires has been fabricated by sequential electrophoretic deposition (EPD). The open-circuit voltage and short-circuit current of a single generator are found to exceed 0.7 V and 100 μA when 6 μL of water was applied. The generator is also found to have a stable and reproducible response to other liquids. An output voltage of 0.3 V was obtained after 244, 876, 931, and 184 μs, on exposure of the generator to 6 μL of water, ethanol, acetone, and methanol, respectively. The fast response time and high sensitivity to liquids show that the device has great potential for the detection of small quantities of liquid. In addition, the simple easily implemented sequential EPD method ensures the high mechanical strength of the device. This compact, reliable device provides a new method for the sensitive, rapid detection of extraneous liquids before they can impact the performance of electronic circuits, particularly those on printed circuit board.


Sign in / Sign up

Export Citation Format

Share Document