Impact of Nitridation on Structural and Optical Properties of Epitaxial GaN Films Grown on M-Plane Sapphire by PAMBE

2015 ◽  
Vol 1736 ◽  
Author(s):  
Shruti Mukundan ◽  
Lokesh Mohan ◽  
Greeshma Chandan ◽  
Basanta Roul ◽  
S.B. Krupanidhi

ABSTRACTGaN epilayers were grown on m-plane (10-10) sapphire substrates using plasma assisted molecular beam epitaxy. Impact of nitridation on structural and optical properties of GaN film was investigated. The film grown on a nitridated surface resulted in a nonpolar (10-10) orientation while without nitridation caused a semipolar (11-22) orientation. The high resolution X-ray diffraction studies confirmed the orientation of the GaN films. X-ray rocking curve showed better crystallinity of semipolar as compared to nonpolar GaN. Atomic force microscopy showed smoother films in case of nonpolar GaN which might be in account of the nitridation treatment. Room temperature photoluminescence study showed nonpolar GaN to have higher value of compressive strain as compared to semipolar GaN film, which was further confirmed by room temperature Raman spectroscopy. Despite the fact that it is difficult to obtain high-quality nonpolar material due to the planar anisotropic nature of the growth mode, we hereby report the development of non-polar GaN of usable quality, on an m-plane sapphire, involving controlled steps of nitridation.

2012 ◽  
Vol 620 ◽  
pp. 368-372 ◽  
Author(s):  
Saleh H. Abud ◽  
Hassan Zainuriah ◽  
Fong Kwong Yam ◽  
Alaa J. Ghazai

In this paper, InGaN/GaN/AlN/Si (111) structure was grown using a plasma-assisted molecular beam epitaxy (PA-MBE) technique. The structural and optical properties of grown film have been characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), high resolution X-ray diffraction (HR-XRD) and photoluminescence (PL). Indium-mole fraction has been computed to be 0.27 using XRD data and Vegards law with high grain size and low tensile strain. Room-temperature photoluminescence revealed an intense peak at 534 nm (2.3 eV) related to our sample In0.27Ga0.73N.


2000 ◽  
Vol 650 ◽  
Author(s):  
Eduardo J. Alves ◽  
C. Liu ◽  
Maria F. da Silva ◽  
José C. Soares ◽  
Rosário Correia ◽  
...  

ABSTRACTIn this work we report the structural and optical properties of ion implanted GaN. Potential acceptors such as Ca and Er were used as dopants. Ion implantation was carried out with the substrate at room temperature and 550 °C, respectively. The lattice site location of the dopants was studied by Rutherford backscattering/channeling combined with particle induced X-ray emission. Angular scans along both [0001] and [1011] directions show that 50% of the Er ions implanted at 550 oC occupy substitutional or near substitutional Ga sites after annealing. For Ca we found only a fraction of 30% located in displaced Ga sites along the [0001] direction. The optical properties of the ion implanted GaN films have been studied by photoluminescence measurements. Er- related luminescence near 1.54 μm is observed under below band gap excitation at liquid helium temperature. The spectra of the annealed samples consist of multiline structures with the sharpest lines found in GaN until now. The green and red emissions were also observed in the Er doped samples after annealing.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012012
Author(s):  
Tamara S. Hussein ◽  
Ala F. Ahmed

Abstract In this study, the effect of grafting with Iron (Fe) ratios (0.1, 0.3 and 0.5) on the structural and optical properties of cadmium oxide films (CdO) was studied, as these films were prepared on glass bases using the method of pulse laser deposition (PLD). The crystallization nature of the prepared films was examined by X-ray diffraction technique (XRD), which showed that the synthesis of the prepared films is polycrystalline, and Atomic Force Microscope (AFM) images also showed that the increased vaccination with Iron led to an increase in the crustal size ratio and a decrease in surface roughness, The absorption coefficient was calculated and the optical energy gap for the prepared thin films. It was found the absorption decreases and the energy gap decreases with the increase of doping ratio.


1998 ◽  
Vol 05 (01) ◽  
pp. 387-392 ◽  
Author(s):  
D. Abriou ◽  
D. Gagnot ◽  
J. Jupille ◽  
F. Creuzet

The growth mode of silver films deposited at room temperature on TiO 2(110) surfaces has been examined by means of atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) in ultrahigh vacuum (UHV) conditions, On clean vacancy-free TiO 2(110) surfaces, 0.1-nm-thick (on average) Ag deposits form a two-dimensional (2D) layer. When the thickness of the silver overlayer is increased, 3D clusters are shown to appear while the 2D film is preserved, furthermore, the influence of surface oxygen vacancies on the growth of Ag/TiO 2(110) is evidenced by well-characterized differences in the morphology of 9-nm-thick silver deposits.


2000 ◽  
Vol 647 ◽  
Author(s):  
Eduardo J. Alves ◽  
C. Liu ◽  
Maria F. da Silva ◽  
José C. Soares ◽  
Rosário Correia ◽  
...  

AbstractIn this work we report the structural and optical properties of ion implanted GaN. Potential acceptors such as Ca and Er were used as dopants. Ion implantation was carried out with the substrate at room temperature and 550 °C, respectively. The lattice site location of the dopants was studied by Rutherford backscattering/channeling combined with particle induced X-ray emission. Angular scans along both [0001] and [1011] directions show that 50% of the Er ions implanted at 550 °C occupy substitutional or near substitutional Ga sites after annealing. For Ca we found only a fraction of 30% located in displaced Ga sites along the [0001] direction. The optical properties of the ion implanted GaN films have been studied by photoluminescence measurements. Er- related luminescence near 1.54 µm is observed under below band gap excitation at liquid helium temperature. The spectra of the annealed samples consist of multiline structures with the sharpest lines found in GaN until now. The green and red emissions were also observed in the Er doped samples after annealing.


2012 ◽  
Vol 545 ◽  
pp. 290-293
Author(s):  
Maryam Amirhoseiny ◽  
Hassan Zainuriah ◽  
Ng Shashiong ◽  
Mohd Anas Ahmad

We have studied the effects of deposition conditions on the crystal structure of InN films deposited on Si substrate. InN thin films have been deposited on Si(100) substrates by reactive radio frequency (RF) magnetron sputtering method with pure In target at room temperature. The nitrogen gas pressure, applied RF power and the distance between target and substrate were 2×10-2 Torr, 60 W and 8 cm, respectively. The effects of the Ar–N2 sputtering gas mixture on the structural properties of the films were investigated by using scanning electron microscope, energy-dispersive X-ray spectroscopy, atomic force microscopy and X-ray diffraction techniques.


2018 ◽  
Vol 106 (4) ◽  
pp. 291-300
Author(s):  
Nidia García-González ◽  
Eduardo Ordoñez-Regil ◽  
María Guadalupe Almazán-Torres ◽  
Eric Simoni

AbstractThe interaction of salicylic acid with zirconium diphosphate surface and its reactivity toward uranium (VI) was investigated. The interaction of salicylic acid with zirconium diphosphate was firstly studied using several analytical techniques including atomic force microscopy, scanning electron microscopy and X-ray photoelectron spectroscopy. The sorption of uranium (VI) onto surface-modified zirconium diphosphate was evaluated by the classical batch method at room temperature. This study showed that the uranium (VI) sorption onto zirconium diphosphate is influenced by the presence of salicylic acid. A fluorescence spectroscopy study revealed the presence of a uranyl specie onto the modified solid surface. The spectroscopy results were then used to restrain the modeling of experimental sorption data, which are interpreted in terms of a constant capacitance model using the FITEQL code. The results indicated that interaction between the uranium (VI) and the surface of zirconium diphosphate modified with salicylic acid leads to the formation of a ternary surface complex.


2020 ◽  
Vol 398 ◽  
pp. 140-146
Author(s):  
Kawther A. Khalaph ◽  
Zainab J. Shanan ◽  
Aqel Mashot Jafar ◽  
Falah Mustafa Al-Attar

Recently, lead iodide is the most materials employment in the perovskite solar cell application. This paper has studied the character of preparation, structural and optical properties of pbI2 materials. Structural properties are included investigation of the measurements X-Ray Diffraction (XRD), Scan Electron Microscopy (SEM), Fourier Transform InfraRed spectroscopy (FTIR) and Atomic Force Microscopy (AFM) tests to the PbI2 thin films samples. Optical properties are included the investigation UV-Vis test of the thin film samples deposited on glass substrates and investigated the Absorption, Transmittance and evaluated energy gap (Eg = 2.3 eV).


1997 ◽  
Vol 482 ◽  
Author(s):  
X. Q. Shen ◽  
S. Tanaka ◽  
S. Iwai ◽  
Y. Aoyagi

AbstractGaN growth was performed on 6H-SiC (0001) substrates by gas-source molecular beam epitaxy (GSMBE), using ammonia (NH3) as a nitrogen source. Two kinds of reflection high-energy electron diffraction (RHEED) patterns, named (1×1) and (2×2), were observed during the GaN growth depending on the growth conditions. By careful RHEED study, it was verified that the (1×1) pattern was corresponded to a H2-related nitrogen-rich surface, while (2×2) pattern was resulted from a Ga-rich surface. By x-ray diffraction (XRD), photoluminescence (PL) and atomic force microscopy (AFM) characterizations, it was found that the GaN quality changed drastically grown under different RHEED patterns. GaN film grown under the (1×1) RHEED pattern showed much better qualities than that grown under the (2×2) one.


Sign in / Sign up

Export Citation Format

Share Document