Enhancement of the thermoelectric figure-of-merit in nanowire superlattices

2015 ◽  
Vol 1735 ◽  
Author(s):  
Chumin Wang ◽  
J. Eduardo González ◽  
Vicenta Sánchez

ABSTRACTBased on the Kubo-Greenwood formula, the thermoelectric effects in periodically and quasiperiodically segmented nanowires are studied by means of a real-space renormalization plus convolution method, where the electrical and lattice thermal conductivities are respectively calculated by using the tight-binding and Born models; the latter includes central and non-central interactions between nearest-neighbor atoms. The results show a significant enhancement of the thermoelectric figure-of-merit (ZT) induced by the structural disorder and/or the reduction of nanowire cross-section area. In addition, we observe a maximum ZT in both the chemical-potential and temperature spaces.

MRS Advances ◽  
2016 ◽  
Vol 1 (60) ◽  
pp. 3953-3958 ◽  
Author(s):  
J. Eduardo Gonzalez ◽  
Vicenta Sanchez ◽  
Chumin Wang

ABSTRACTThermoelectric properties of segmented nanowires and nanobelts are studied by means of the Kubo-Greenwood formula and a real-space renormalization plus convolution method. The tight-binding and Born models are respectively used for the calculation of electronic and lattice thermal conductivities. In particular, we investigate the thermoelectric figure of merit (ZT) of periodic and quasiperiodically segmented nanowires with two different cross sections, where the segments of the quasiperiodic one are ordered following the Fibonacci sequence. The results show an increase of ZT when the cross section area of nanowires diminishes. In addition, we present results of ZT in segmented nanobelts with an inhomogeneous cross section. For both nanowires and nanobelts, the quasiperiodicity seems to be an important enhancing factor of ZT.


2017 ◽  
Vol 31 (15) ◽  
pp. 1750124 ◽  
Author(s):  
D. V. Kolesnikov ◽  
O. G. Sadykova ◽  
V. A. Osipov

The influence of periodic edge vacancies and antidot arrays on the thermoelectric properties of zigzag graphene nanoribbons (ZGNRs) are investigated. Using Green’s function method, the tight-binding approximation for the electron Hamiltonian and the 4th nearest neighbor approximation for the phonon dynamical matrix, we calculate the Seebeck coefficient and the thermoelectric figure of merit. It is found that, at a certain periodic arrangement of vacancies on both edges of zigzag nanoribbon, a finite band gap opens and almost twofold degenerate energy levels appear. As a result, a marked increase in the Seebeck coefficient takes place. It is shown that an additional enhancement of the thermoelectric figure of merit can be achieved by a combination of periodic edge defects with an antidot array.


2016 ◽  
Vol 4 (9) ◽  
pp. 1871-1880 ◽  
Author(s):  
Gabin Guélou ◽  
Paz Vaqueiro ◽  
Jesús Prado-Gonjal ◽  
Tristan Barbier ◽  
Sylvie Hébert ◽  
...  

The thermoelectric figure of merit of TiS2 is increased by 25% through the intercalation of low levels of cobalt due to an increased electrical conductivity, arising from charge transfer, and a reduced thermal conductivity resulting from disorder.


Author(s):  
Yushen Liu ◽  
Jinfu Feng ◽  
Xuefeng Wang

Based on first-principles methods, the authors of this paper investigate spin thermoelectric effects of one-dimensional spin-based devices consisting of zigzag-edged graphene nanoribbons (ZGNRs), carbon chains and graphene nanoflake. It is found that the spin-down transmission function is suppressed to zero, while the spin-up transmission function is about 0.25. Therefore, an ideal half-metallic property is achieved. In addition, the phonon thermal conductance is obviously smaller than the electronic thermal conductance. Meantime, the spin Seebeck effects are obviously enhanced at the low-temperature regime (about 80K), resulting in the fact that spin thermoelectric figure of merit can reach about 40. Moreover, the spin thermoelectric figure of merit is always larger than the corresponding charge thermoelectric figure of merit. Therefore, the study shows that they can be used to prepare the ideal thermospin devices.


Author(s):  
Enamul Haque

This article reports the extraordinary thermoelectric figure of merit (ZT) of NaBaBi: degenerate bands, instead of the valley degeneracy of Bi2Te3, highly non-parabolic bands, and low DOS near the Fermi level of NaBaBi lead to an extraordinary ZTisotropic ≈ 1.60 at 350 K.


2019 ◽  
Vol 34 (02) ◽  
pp. 2050019 ◽  
Author(s):  
Y. Zhang ◽  
M. M. Fan ◽  
C. C. Ruan ◽  
Y. W. Zhang ◽  
X.-J. Li ◽  
...  

[Formula: see text] ceramic samples have a structure similar to phonon glass electronic crystals, and their thermoelectric properties can be effectively adjusted through repeated grinding and sintering. The results show that multi-sintering can make their grain refined and increase their grain boundary, which will effectively increase density and phonon scattering. Finally, multi-sintering can reduce the resistivity and thermal conductivity, thus obviously improve thermoelectric figure of merit [Formula: see text] of [Formula: see text]. The optimum [Formula: see text] value of 0.26 is achieved at 923 K by the third sintered sample.


2020 ◽  
Vol 22 (4) ◽  
pp. 2081-2086 ◽  
Author(s):  
Taiki Tanishita ◽  
Koichiro Suekuni ◽  
Hirotaka Nishiate ◽  
Chul-Ho Lee ◽  
Michitaka Ohtaki

Co-substitution of Ge and P for Sb in Cu3SbS4 famatinite boosted dimensionless thermoelectric figure of merit.


2007 ◽  
Vol 534-536 ◽  
pp. 161-164 ◽  
Author(s):  
Taek Soo Kim ◽  
Byong Sun Chun

N-type Bi2Te3-Sb2Te3 solid solutions doped with CdCl2 was prepared by melt spinning, crushing and vacuum sintering processes. Microstructure, bending strength and thermoelectric property were investigated as a function of the doping quantity from 0.03wt.% to 0.10wt.% and sintering temperature from 400oC to 500oC, and finally compared with those of conventionally fabricated alloys. The alloy showed a good structural homogeneity as well as bending strength of 3.88Kgf/mm2. The highest thermoelectric figure of merit was obtained by doping 0.03wt.% and sintering at 500oC.


2001 ◽  
Vol 16 (3) ◽  
pp. 837-843 ◽  
Author(s):  
Xinfeng Tang ◽  
Lidong Chen ◽  
Takashi Goto ◽  
Toshio Hirai

Single-phase filled skutterudite compounds, CeyFexCo4−xSb12 (x = 0 to 3.0, y = 0 to 0.74), were synthesized by a melting method. The effects of Fe content and Ce filling fraction on the thermoelectric properties of CeyFexCo4−xSb12 were investigated. The lattice thermal conductivity of Ce-saturated CeyFexCo4−xSb12, y being at the maximum corresponding to x, decreased with increasing Fe content (x) and reached its minimum at about x = 1.5. When x was 1.5, lattice thermal conductivity decreased with increasing Ce filling fraction till y = 0.3 and then began to increase after reaching the minimum at y = 0.3. Hole concentration and electrical conductivity of Cey Fe1.5Co2.5Sb12 decreased with increasing Ce filling fraction. The Seebeck coefficient increased with increasing Ce filling fraction. The greatest dimensionless thermoelectric figure of merit T value of 1.1 was obtained at 750 K for the composition of Ce0.28Fe1.52Co2.48Sb12.


Sign in / Sign up

Export Citation Format

Share Document