Structural and Chemical Analysis of Nanoscale Resistive Switching Devices: Assessment on Nonlinear Properties

2015 ◽  
Vol 1805 ◽  
Author(s):  
Kate J. Norris ◽  
J. Joshua Yang ◽  
Nobuhiko P. Kobayashi

ABSTRACTInvestigation into the phenomenon of resistive switching, a reversible change in electrical resistance by the application of a voltage bias, has given rise to the device fabrication, DC electrical testing, and cross sectional TEM/EELS characterization of nanoscale resistive switching devices. Typically, resistive switching devices are composed of a thin oxide layer between two conductive electrodes where applied bias can alter the resistance states. In a cross-bar array, nonlinearity of device I-V relation is a highly desirable characteristic that helps to mitigate the sneak path current leakage issue. Negative differential resistance (NDR) switching behavior offers such nonlinearity and has been observed in TaOx nanoscale devices utilizing certain electrode materials. To investigate this phenomenon, nanodevices were fabricated by sputtering TaOx onto TiN nanovias capped Nb electrodes. Cross sectional TEM/EELS were performed to reveal the physical and chemical changes in these devices to explore possible origins of nonlinear behavior when these top electrode materials are utilized with TaOx films.

2016 ◽  
Vol 99 ◽  
pp. 75-80
Author(s):  
Arsen Igityan ◽  
Yevgenia Kafadaryan ◽  
Natella Aghamalyan ◽  
Silva Petrosyan

Lithium (0, 1.0 and 10 at.%)-doped ZnO (LiZnO) polycrystalline thin films were deposited on Pt/SiO2, LaB6/Al2O3, Au/SiO2 and 20 at.% fluorine-doped SnO2(FTO)/glass substrates by an e-beam evaporation method. Metal/LiZnO/Metal sandwich structures were constructed by depositing different top electrodes (Ag, Al and Au) to find memristive characteristics depending on the lithium content and electrode materials. Compared with undoped and 1%Li-doped ZnO devices, the 10 at.%Li-doped ZnO (10LiZnO) device exhibits resistive switching memory. The Ag/10LiZnO/Pt and Ag/10LiZnO/LaB6 memory devices exhibit unipolar resistive switching behavior while bipolar resistive switching in Ag/10LiZnO/FTO, Au/10LiZnO/FTO and Al/10LiZnO/LaB6 structures is revealed. The dominant conduction mechanisms are explained in terms of Ohmic behavior, space charge limited current (SCLC) and Schottky emission for the URS and BRS behaviors.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Geetika Khurana ◽  
Nitu Kumar ◽  
Manish Chhowalla ◽  
James F. Scott ◽  
Ram S. Katiyar

Abstract Downscaling limitations and limited write/erase cycles in conventional charge-storage based non-volatile memories stimulate the development of emerging memory devices having enhanced performance. Resistive random-access memory (RRAM) devices are recognized as the next-generation memory devices for employment in artificial intelligence and neuromorphic computing, due to their smallest cell size, high write/erase speed and endurance. Unipolar and bipolar resistive switching characteristics in graphene oxide (GO) have been extensively studied in recent years, whereas the study of non-polar and complementary switching is scarce. Here we fabricated GO-based RRAM devices with gold nanoparticles (Au Nps). Diverse types of switching behavior are observed by changing the processing methods and device geometry. Tri-layer GO-based devices illustrated non-polar resistive switching, which is a combination of unipolar and bipolar switching. Five-layer GO-based devices depicted complementary resistive switching having the lowest current values ~12 µA; and this structure is capable of resolving the sneak path issue. Both devices show good retention and endurance performance. Au Nps in tri-layer devices assisted the conducting path, whereas in five-layer devices, Au Nps layer worked as common electrodes between co-joined cells. These GO-based devices with Au Nps comprising different configuration are vital for practical applications of emerging non-volatile resistive memories.


2015 ◽  
Vol 1805 ◽  
Author(s):  
Kate J. Norris ◽  
J. Joshua Yang ◽  
Nobuhiko P. Kobayashi

ABSTRACTResistive switching, a reversible change in electrical resistance of a dielectric layer through the application of a voltage bias, has propelled a field of research to form improved non-volatile memory device. Tantalum oxide has been investigated as the dielectric component of resistive switching devices as a leading candidate for a few years. Presented here is a structural and chemical investigation of TaOx devices with 55nm in diameter in the virgin, forming on, and switched off (reset) states for comparison using cross sectional TEM techniques including HRTEM, and EELS to gain further understanding of this material system. The nanodevices imaged in this study were switched below 100µA. Unique features found in this study are in agreement with previous hypotheses made by various researchers based on X-ray fluorescence microscopy of micron-scale devices, indicating a variation in oxygen concentration around the switching area.


2020 ◽  
Vol 22 (10) ◽  
pp. 5819-5825 ◽  
Author(s):  
Xinxin Ran ◽  
Pengfei Hou ◽  
Jiaxun Song ◽  
Hongjia Song ◽  
Xiangli Zhong ◽  
...  

The polarization and interfacial defect modulated NDR effect shows good reproducibility for hundreds of cycles in h-LuFeO3/CoFe2O4 heterojunction-based RS devices.


2014 ◽  
Vol 105 (11) ◽  
pp. 113504 ◽  
Author(s):  
D. S. Hong ◽  
W. X. Wang ◽  
Y. S. Chen ◽  
J. R. Sun ◽  
B. G. Shen

2002 ◽  
Vol 25 (3) ◽  
pp. 233-237
Author(s):  
K. F. Yarn

First observation of switching behavior is reported in GaAs metal-insulator-p-n+structure, where the thin insulator is grown at low temperature by a liquid phase chemical-enhanced oxide (LPECO) with a thickness of 100 Å. A significant S-shaped negative differential resistance (NDR) is shown to occur that originates from the regenerative feedback in a tunnel metal/insulator/semiconductor (MIS) interface andp-n+junction. The influence of epitaxial doping concentration on the switching and holding voltages is investigated. The switching voltages are found to be decreased when increasing the epitaxial doping concentration, while the holding voltages are almost kept constant. A high turn-off/turn-on resistance ratio up to105has been obtained.


RSC Advances ◽  
2020 ◽  
Vol 10 (69) ◽  
pp. 42249-42255
Author(s):  
Xiaohan Wu ◽  
Ruijing Ge ◽  
Yifu Huang ◽  
Deji Akinwande ◽  
Jack C. Lee

Constant voltage and current stress were applied on MoS2 resistive switching devices, showing unique behaviors explained by a modified conductive-bridge-like model.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sera Kwon ◽  
Min-Jung Kim ◽  
Kwun-Bum Chung

AbstractTiOx-based resistive switching devices have recently attracted attention as a promising candidate for next-generation non-volatile memory devices. A number of studies have attempted to increase the structural density of resistive switching devices. The fabrication of a multi-level switching device is a feasible method for increasing the density of the memory cell. Herein, we attempt to obtain a non-volatile multi-level switching memory device that is highly transparent by embedding SiO2 nanoparticles (NPs) into the TiOx matrix (TiOx@SiO2 NPs). The fully transparent resistive switching device is fabricated with an ITO/TiOx@SiO2 NPs/ITO structure on glass substrate, and it shows transmittance over 95% in the visible range. The TiOx@SiO2 NPs device shows outstanding switching characteristics, such as a high on/off ratio, long retention time, good endurance, and distinguishable multi-level switching. To understand multi-level switching characteristics by adjusting the set voltages, we analyze the switching mechanism in each resistive state. This method represents a promising approach for high-performance non-volatile multi-level memory applications.


Sign in / Sign up

Export Citation Format

Share Document