Wear Properties and Surface Structure of Ion Implanted Glassy Carbon

1988 ◽  
Vol 100 ◽  
Author(s):  
Kazuo Yoshida ◽  
Kazuhiko Okuno ◽  
Gen Katagiri ◽  
Akira Ishitani ◽  
Katsuo Takahashi ◽  
...  

ABSTRACTWear properties of Li+, K+, C+, Cl+, and Ti+ implanted glassy carbons (GC) have been studied by wear tests using silicon carbide abrasive paper. It has been found that ion implantation is effective for improving wear resistance of GC. The measurements of Raman spectra revealed formation of an amorphous structure on the surface. Anomalous depth profiles with flat concentration distribution of Li and K atoms were observed by a secondary ion mass spectroscopy (SIMS). In conclusion. the formation of an amorphous structure seems to explain the improvement in wear resistance.

2019 ◽  
Vol 813 ◽  
pp. 80-85
Author(s):  
Antonio Formisano ◽  
Massimo Durante ◽  
Antonio Langella

In order to improve wear properties of thermosetting resins, potential solutions are the reduction of the adhesion between the counterparts and the improvement of their hardness, stiffness and compressive strength. These goals can be achieved with success by using appropriate inorganic fillers. Concerning this, the present work shows the possibility to increase the abrasive wear resistance of an epoxy resin filled with hard powder. The filling is made by silicon carbide powders in different content and with different particle sizes. Abrasive tests, performed by means of a pin on disc apparatus, highlight that the wear of plain and reinforced resins increases both with the contact pressure between the counterparts and the counterface roughness. Moreover, the wear resistance of the filled resins increases with the increase of content and dimensions of the filling particles.


2020 ◽  
Vol 896 ◽  
pp. 270-275
Author(s):  
Stefan Gheorghe ◽  
Cristina Ileana Pascu ◽  
Claudiu Nicolicescu

Titanium sintered alloys have a special use in the technique because they have multiple advantages. Titanium and its alloys are characterized by remarkable physic-chemical, mechanical and technological properties. However, there are several such properties that have a lower value, such as friction behavior. Titanium and its alloys are recognized as having low wear resistance. Titanium alloyed with certain elements, such as tin or graphite, can lead to alloys with improved wear properties, with the specification that graphite does not exceed 1%. The technology of manufacturing titanium-based alloys is specific to powder metallurgy, but it also has some originality by choosing special sintering cycles. The paper aims to present a tribological characterization of the sintered TiAl alloy; the method uses the disc of the alloy that has been researched in contact with an alumina ball. The paper presents a detailed analysis of the wear tests carried out for four types of specimens obtained by different methods.


2015 ◽  
Vol 67 (3) ◽  
pp. 262-268 ◽  
Author(s):  
Adalet Zeren

Purpose – The purpose of this paper is to understand the effect of graphite content on the properties of aluminum alloy/silicon carbide/granite (Al/SiC/Gr) composites. Design/methodology/approach – Hardness and wear tests were applied to the powder metallurgical composites, and microstructural characterization was conducted. Findings – Optimum graphite content for maximum wear resistance is reported as weight 6 per cent. Originality/value – Results of this study may help light weight Al/SiC/Gr composites to be used in different industrial applications.


2010 ◽  
Vol 1245 ◽  
Author(s):  
Baojun Liu ◽  
Nazir Kherani ◽  
Kevin P Chen ◽  
Tome Kosteski ◽  
Keith Leong ◽  
...  

AbstractTritiated amorphous and crystalline silicon is prepared by exposing silicon samples to tritium gas (T2) at various pressures and temperatures. Total tritium content and tritium concentration depth profiles in the tritiated samples are obtained using thermal effusion and Secondary Ion Mass Spectroscopy (SIMS) measurements. The results indicate that tritium incorporation is a function of the material microstructure rather than the tritium exposure condition. The highest tritium concentration attained in the amorphous silicon is about 20 at.% on average with a penetration depth of about 50 nm. In contrast, the tritium occluded in the c-Si is about 4 at.% with a penetration depth of about 10 nm. The tritium concentration observed in a-Si:H and c-Si is higher than reported results from post-hydrogenation experiments. The beta irradiation appears to catalyze the tritiation process and enhance the tritium dissolution in silicon material.


1988 ◽  
Vol 100 ◽  
Author(s):  
P. D. Ehni ◽  
I. L. Singer ◽  
S. M. Hues

ABSTRACTModel solute distribution studies have been performed in N-implanted Fe. Concentration-verses-depth profiles have been determined by secondary ion mass spectroscopy for Fe implanted to low fluences with isotopes 13C at 190keV and 15N at 180keV followed by 14N to high fluences. At N fluences greater than 2.5 × 1017 /cm2 dramatic changes in the 13C and 15N profiles are observed. It is proposed that these changes are caused by the lattice dilation due to precipitation of iron nitrides.


2000 ◽  
Vol 643 ◽  
Author(s):  
Paul D. Bloom ◽  
K.G. Baikerikar ◽  
James W. Anderegg ◽  
Valerie V. Sheares

AbstractQuasicrystalline Al-Cu-Fe powders were used as a novel filler material in poly(p-phenylene sulfide) (PPS). These polymer/quasicrystal composites showed useful properties that may be beneficially exploited in applications such as dry bearings and composite gears. Al-Cu-Fe quasicrystalline filler significantly improved wear resistance to volume loss in polymer-based composites. In addition to improving the composite wear resistance, the Al-Cu-Fe filler showed low abrasion to the 52100 chrome steel counterface. Furthermore, mechanical testing results showed a two-fold increase in the storage modulus of the reinforced composites compared with the polymer samples. In addition, the Al-Cu-Fe filler was compared to its constituent metals, aluminum oxide, and silicon carbide in PPS. Chemical analysis of the wear interface by X-ray spectroscopy indicated the generation of a third body oxide layer during wear. The fabrication in addition to the thermal, mechanical, and wear properties of these unique materials is described.


1995 ◽  
Vol 68 (5) ◽  
pp. 804-814 ◽  
Author(s):  
V. Krishnan ◽  
R. Ramakrishnan ◽  
J. A. Donovan

Abstract The wear resistance ranking of three rubber compounds A, G and K measured in the laboratory at medium to high slip on sharp silicon carbide (SiC) grinding wheels was similar to that determined by road tests at Pecos, Texas. The wear resistance ranking of the three compounds changed on blunt alumina grinding wheels compared to wear resistance rankings on sharp SiC grinding wheels. The change was most probably due to a change of mechanism from mainly cutting on sharp surfaces to predominantly fatigue on blunt surfaces. For these three compounds a change in the ambient temperature from 23 to 75°C during laboratory testing had no effect on the wear resistance ranking. The wear of the rubber compounds on the abrasive grinding wheels and during road tests followed Zapp's relation in which the wear is proportional to the ratio of dynamic modulus to rupture energy.


2010 ◽  
Vol 97-101 ◽  
pp. 1510-1513
Author(s):  
Jun Zhou ◽  
Fa Qin Xie ◽  
Yong Quan Li ◽  
Xiang Qing Wu

Co-based composite coatings reinforced by TiN particles were fabricated on Ni-based superalloy substrate by using a 5 kW CO2 laser. The microstructures and phases constitution of the composite coating were studied by means of optical microscope (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The microhardness and wear resistance of the coating were also examined. The results showed that the composite coating was mainly composed of γ-Co, TiN, TiC, (Cr, W)23C6 and Co3Ti. And different solidification morphologies, such as planar, cellular and dendrite, were obtained. Structural transformations were attributed to the temperature gradient and solidification rate in metal-melting region. It was found that the microhardness of the composite coating was enhanced prominently as compared to the substrate region, which should be due to the undissolved TiN and other new complicated phase. Friction and wear tests without lubrication showed that the addition of TiN particles into Co-based coating can improve its wear resistance significantly without evidently increasing the friction coefficient of coating.


Sign in / Sign up

Export Citation Format

Share Document