Effect of the graphite content on the tribological properties of hybrid Al/SiC/Gr composites processed by powder metallurgy

2015 ◽  
Vol 67 (3) ◽  
pp. 262-268 ◽  
Author(s):  
Adalet Zeren

Purpose – The purpose of this paper is to understand the effect of graphite content on the properties of aluminum alloy/silicon carbide/granite (Al/SiC/Gr) composites. Design/methodology/approach – Hardness and wear tests were applied to the powder metallurgical composites, and microstructural characterization was conducted. Findings – Optimum graphite content for maximum wear resistance is reported as weight 6 per cent. Originality/value – Results of this study may help light weight Al/SiC/Gr composites to be used in different industrial applications.

2018 ◽  
Vol 70 (8) ◽  
pp. 1408-1413 ◽  
Author(s):  
Hongjin Zhao ◽  
Lei Cao ◽  
Yong Wan ◽  
Shuyan Yang ◽  
Jianguo Gao ◽  
...  

Purpose The purpose of this paper is to increase wear resistance of aluminum. Design/methodology/approach The authors have studied the ways to improve the tribological performance of aluminum by assembling stearic acid on aluminum coated by sol-gel-derived TiO2 film. The samples were characterized by infrared spectroscopy, contact angle measurements and a macro friction and wear tester. Findings Enhanced wear resistance was clearly obtained after functionalization of TiO2 film on aluminum by stearic acid. Originality/value The relevant results might be helpful for guiding the surface modification of aluminum devices in industrial applications.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ansheng Zhang ◽  
Mingyu Zhang ◽  
Jing Wang ◽  
Jianjun Zhang ◽  
Zhaohua Shang ◽  
...  

Purpose The purpose of this paper is to study the influence of surface precision on the lubrication state of the roller chain under adequate and rare oil supply conditions, respectively. Design/methodology/approach The straightness error and roughness error of the pin generatrices were measured and the influence of surface precision on the lubrication behavior under steady state and reciprocating motion was studied through optical interference experiments. Findings The lubrication state is strongly influenced by the surface precision of the roller surface both under adequate oil supply and rare oil supply conditions. Originality/value In industrial applications, the machining errors of parts cannot be completely eliminated. Studying the influence of the surface precision on the lubrication behavior of pin–bush pairs can provide the experimental basis for the optimal design of the bush roller chains.


2016 ◽  
Vol 36 (2) ◽  
pp. 146-151 ◽  
Author(s):  
Haixia Wang ◽  
Yuliang Wang ◽  
Yaozong Sun ◽  
Qiong Pu ◽  
Xiao Lu

Purpose Because of the inconvenience and inflexibility of the laser controller, the applied range of optogenetics is limited. This paper aims to present the design of a portable remote-controlled laser controller system, including the remote-controlled system and the laser stimulator. Design/methodology/approach The remote-controlled system is handheld, which can wirelessly adjust the power and the emitting frequency of the laser by utilizing the ZigBee module. Findings The laser stimulator can be mounted on the animal as it is light weight (35 g) and small in size (40 × 40 × 20 mm), and its power and frequency can be appropriately adjusted by changing the current amplitude and duty radio. In the end, the experiments verify the reliability and effectiveness of the laser controller. Originality/value In virtue of the modular design of the driven circuit and the reasonable layout, the whole system has the advantages of small volume, convenient control and high stability, which provide the convenience for the development of portable optogenetics animal robot experiment and has broad market prospects.


2014 ◽  
Vol 966-967 ◽  
pp. 386-396 ◽  
Author(s):  
Yuan Ching Lin ◽  
Jia Bin Bai ◽  
Jiun Nan Chen

The austenitic stainless steel (SS) of AISI 304L is widely used in industrial applications because of its superior anti-corrosion resistance. However, the material suffers from a lower hardness, thus reducing wear resistance. In this study, AISI 304L was clad with tungsten boride (WB) ceramic powder using the gas tungsten arc welding (GTAW) process to increase surface hardness and improve wear resistance. The microstructure of the cladding layer was investigated using an X-ray diffractometer (XRD), an electron probe microanalyzer (EPMA), and a scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS). The hardness distribution of the cladding layer was measured using a micro-Vickers hardness tester. Wear tests were conducted with a pin-on-disc tribometer at the ambient condition, while simultaneously monitoring friction coefficient variation. Surface frictional temperature was recorded with K-type thermocouples during wear tests. The worn morphology of the tested specimens was observed by SEM to identify wear characteristics. The results show that WB cladding successfully increased the hardness and the wear resistance of AISI 304L. Keywords: GTAW, WB, wear resistance, microstructure


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xiaocui Xin ◽  
Yunxia Wang ◽  
Zhaojie Meng ◽  
Fengyuan Yan

Purpose The purpose of this paper is to investigate the fretting wear performance of ultra-high-molecular-weight-polyethene (UHMWPE) with addition of GO and SiO2. Design/methodology/approach In this study, GO were synthesized and SiO2 nanoparticles were grafted onto GO. The effect of nanofiller on fretting wear performance of UHMWPE was investigated. Findings The results indicated that GO was successfully synthesized and SiO2 nanoparticles successfully grafted onto GO. Incorporation of GS was beneficial for the reduction in friction and the improvement in wear resistance of UHMWPE. GO was beneficial for reducing friction coefficient, while SiO2 was good for improving wear resistance. There existed a tribological synergistic effect between GO nanosheet and SiO2 nanoparticles. Research limitations/implications The hybrids of GS were promising nanofiller for improving the fretting wear performance of UHMWPE. Originality/value The main originality of the research is to reveal the effect of GO and SiO2 nanoparticles on fretting behavior of UHMWPE. The result indicated hybrids of GS were promising nanofiller for improving the fretting wear performance of UHMWPE.


2019 ◽  
Vol 72 (1) ◽  
pp. 172-179 ◽  
Author(s):  
Meiling Wang

Purpose The purpose of this study is to investigate the effect of engineered micro-structures on the tribological properties of metal-polyetheretherketone (PEEK) surface. Design/methodology/approach Circular dimples with diameters of 25 and 50 µm were designed and manufactured on PEEK plate specimens using picosecond laser. Reciprocating friction and wear tests on a ball-on-flat configuration were performed to evaluate the tribological properties of the designed micro-structures in dry contacts. The loading forces of 0.9 and 3 N were applied. Findings As a result, obvious fluctuations of coefficient of friction curve were observed in tribosystems consisting of non-textured and textured PEEK with circular dimples of 25 µm in diameter. GCr15 ball/textured PEEK plate specimens with circular dimples of 50 µm in diameter revealed a superior friction and wear property. Originality/value Different to the existing studies in which the tribopairs consist of hard bearing couples, this study investigated the tribological properties of the engineered micro-structures on the hard-on-soft bearing couples.


Circuit World ◽  
2017 ◽  
Vol 43 (1) ◽  
pp. 38-42 ◽  
Author(s):  
Krzysztof Górecki ◽  
Damian Bisewski ◽  
Janusz Zarębski ◽  
Ryszard Kisiel ◽  
Marcin Myśliwiec

Purpose This paper aims to present the results of measurements and calculations illustrating mutual thermal coupling between power Schottky diodes made of silicon carbide situated in the common case. Design/methodology/approach The idea of measurements of mutual transient thermal impedances of the investigated device is described. Findings The results of measurements of mutual transient thermal impedances between the considered diodes are shown. The experimentally verified results of calculations of the internal temperature waveforms of the considered diodes obtained with mutual thermal coupling taken into account are presented and discussed. The influence of mutual thermal coupling and a self-heating phenomenon on the internal temperature of the considered diodes is pointed out. Research limitations/implications The presented methods of measurements and calculations can be used for constructing the investigated diodes made of other semiconductor materials. Originality/value The presented results prove that mutual thermal coupling between diodes mounted in the common case must be taken into account to calculate correctly the waveforms of the device internal temperature.


2014 ◽  
Vol 936 ◽  
pp. 1047-1055 ◽  
Author(s):  
Edgar S. Ashiuchi ◽  
Volker F. Steier ◽  
Cosme R.M. Silva ◽  
Tales D. Barbosa ◽  
Tiago F.O. Melo ◽  
...  

The endurance of components made of aluminum and aluminum alloys is often limited by their low yield strength and by their low wear resistance. The aim of this paper is to investigate the effect of different methods that can improve wear resistance of aluminum alloys. As a first approach, a highly wear resistant chromium nitrite layer was deposited by plasma vapor deposition on the surface of the aluminum alloy AA 6101-T4. In the second method, an ultra-deep cryogenic treatment was selected. Both methods have been previously used to improve the wear resistance of other harder substrate materials, like tool steel. To investigate the impact of the two methods on the wear resistance of such alloy, micro abrasive wear tests were carried out and an analysis based on the Archard’s law was considered. The results showed a decrease of the wear rate by 29% and 26% for the coated and for the cryogenically treated specimens, respectively, when compared to the as received material. The work also investigated the performance of three different methods (Allsopp, Double Intercept and Polynomial AT) usually considered to calculate the wear rate of coated samples. The three methods presented similar measures of wear rate for the substrate and for the coating


1988 ◽  
Vol 100 ◽  
Author(s):  
Kazuo Yoshida ◽  
Kazuhiko Okuno ◽  
Gen Katagiri ◽  
Akira Ishitani ◽  
Katsuo Takahashi ◽  
...  

ABSTRACTWear properties of Li+, K+, C+, Cl+, and Ti+ implanted glassy carbons (GC) have been studied by wear tests using silicon carbide abrasive paper. It has been found that ion implantation is effective for improving wear resistance of GC. The measurements of Raman spectra revealed formation of an amorphous structure on the surface. Anomalous depth profiles with flat concentration distribution of Li and K atoms were observed by a secondary ion mass spectroscopy (SIMS). In conclusion. the formation of an amorphous structure seems to explain the improvement in wear resistance.


2019 ◽  
Vol 16 (4) ◽  
pp. 445-451
Author(s):  
Souad Bettayeb ◽  
Zakaria Boumerzoug ◽  
Cherif Saib

Purpose The purpose of this paper is to present the effect of the aging at 200°C on creep and hardening behavior of hardenable 6101 aluminum alloy manufactured by an industrial wiredrawing process used for construction of self-supporting overhead aerial power line conductors. Design/methodology/approach The creep tests were carried out under applied constant stress 100 MPa and constant temperature 150°C. Hardness measurements were also used to investigate the mechanical behavior of the aged alloy. Micrographs of the fractured wires by creep tests were performed by scanning electron microscope. Electrical resistivity of the aged alloy was measured at different time of the aging treatment. Findings The authors have found the relationship between the precipitation sequence, the mechanical properties and the electrical resistivity of aged 6101 aluminum alloy. Originality/value The optimum properties were also deduced.


Sign in / Sign up

Export Citation Format

Share Document